我有以下两个表:
Table_1
ID Interval
1 10
1 11
2 11
和
Table_2
ID Interval Rating
1 10 0.5
1 10 0.3
1 11 0.1
2 11 0.1
2 11 0.2
输出表应如下所示:
ID Interval Mean Ratings
1 10 0.4
1 11 0.1
2 11 0.15
我的目标是根据两个条件/列ID和间隔连接两个表。鉴于我对相同的ID和间隔有几个评级,我想计算评级的平均值。虽然ID是唯一的(~9500),但不同ID的间隔重复(如上表所示)。我目前的方法是使用2个参数的join函数。如何根据条件ID和间隔创建Table_1和Table_2连接的最终表,并在结果列中接收平均评级?
left_join(Table_1, Table_2, by = c("ID" = "ID", "Interval" = "Interval"))
答案 0 :(得分:2)
首先,您需要汇总第二个表DT2
,然后使用第一个表DT1
执行正确的联接。
library(data.table)
DT1[DT2[, .(Mean_Rating = mean(Rating)), .(ID, Interval)], on = c(ID = "ID", Interval = "Interval")]
给出了
ID Interval Mean_Rating
1: 1 10 0.40
2: 1 11 0.10
3: 2 11 0.15
示例数据:
DT1 <- structure(list(ID = c(1L, 1L, 2L), Interval = c(10L, 11L, 11L
)), .Names = c("ID", "Interval"), class = c("data.table", "data.frame"
), row.names = c(NA, -3L))
DT2 <- structure(list(ID = c(1L, 1L, 1L, 2L, 2L), Interval = c(10L,
10L, 11L, 11L, 11L), Rating = c(0.5, 0.3, 0.1, 0.1, 0.2)), .Names = c("ID",
"Interval", "Rating"), class = c("data.table", "data.frame"), row.names = c(NA,
-5L))
答案 1 :(得分:1)
您可以使用dplyr
left_join
,group_by
,然后summarise
来实现这一目标。
library(dplyr)
table1 %>%
left_join(table2, by = c("ID", "Interval")) %>%
group_by(ID, Interval) %>%
summarise("Mean Ratings" = mean(Rating))
## A tibble: 3 x 3
## Groups: ID [?]
# ID Interval `Mean Ratings`
# <int> <int> <dbl>
#1 1 10 0.4
#2 1 11 0.1
#3 2 11 0.15
数据强>
table1 <- read.table(header = T, text="ID Interval
1 10
1 11
2 11")
table2 <- read.table(header = T, text = "ID Interval Rating
1 10 0.5
1 10 0.3
1 11 0.1
2 11 0.1
2 11 0.2")
答案 2 :(得分:0)
你不需要加入。相反,绑定您的表并使用组&amp;摘自dplyr。以下内容实现了您的要求:
library(dplyr)
table_1 <- data.frame("ID"= c(1,1,2),"Interval"=c (10,11,11),"Rating"= c(NA,NA,NA))
table_2 <- data.frame("ID"= c(1,1,1,2,2),"Interval"= c(10,10,11,11,11),"Rating"= c(0.5,0.3,0.1,0.1,0.2))
df1 <- bind_rows(table_1,table_2) %>% group_by(ID,Interval) %>% summarise("Mean Ratings" = mean(Rating,na.rm = TRUE))