我在理解卡方特征选择时遇到了问题。我有两个类,正面和负面,每个类包含不同的术语和术语计数。我需要执行卡方特征选择以提取每个类的最具代表性的术语。问题是我最终得到了正面和负面类的完全相同的术语。这是我选择功能的Python代码:
#!/usr/bin/python
# import the necessary libraries
import math
class ChiFeatureSelector:
def __init__(self, extCorpus, lookupCorpus):
# store the extraction corpus and lookup corpus
self.extCorpus = extCorpus
self.lookupCorpus = lookupCorpus
def select(self, outPath):
# dictionary of chi-squared scores
scores = {}
# loop over the words in the extraction corpus
for w in self.extCorpus.getTerms():
# build the chi-squared table
n11 = float(self.extCorpus.getTermCount(w))
n10 = float(self.lookupCorpus.getTermCount(w))
n01 = float(self.extCorpus.getTotalDocs() - n11)
n00 = float(self.lookupCorpus.getTotalDocs() - n10)
# perform the chi-squared calculation and store
# the score in the dictionary
a = n11 + n10 + n01 + n00
b = ((n11 * n00) - (n10 * n01)) ** 2
c = (n11 + n01) * (n11 + n10) * (n10 + n00) * (n01 + n00)
chi = (a * b) / c
scores[w] = chi
# sort the scores in descending order
scores = sorted([(v, k) for (k, v) in scores.items()], reverse = True)
i = 0
for (v, k) in scores:
print str(k) + " : " + str(v)
i += 1
if i == 10:
break
这就是我使用该类的方法(为简洁起见省略了一些代码,是的,我已经检查过以确保这两个语料库不包含完全相同的数据。
# perform positive ngram feature selection
print "positive:\n"
f = ChiFeatureSelector(posCorpus, negCorpus)
f.select(posOutputPath)
print "\nnegative:\n"
# perform negative ngram feature selection
f = ChiFeatureSelector(negCorpus, posCorpus)
f.select(negOutputPath)
我觉得错误来自于我计算术语/文档表时但我不确定。也许我不理解某些事情。有人能指出我正确的方向吗?
答案 0 :(得分:2)
在两类案例中,如果两者的特征卡特排名相同 交换数据集。它们是最不同的特征 两个班。