假设我有这三个向量:
time <- c(306,455,1010,210,883,1022,310,361,218,166)
status <- c(0,1,0,1,0,0,1,0,1,1)
gender <- c("Male","Male","Female","Male","Male","Male","Female","Female","Female","Female")
我希望进行生存分析并获得摘要。
A <- survfit(Surv(time, status)~gender)
summary(A, censored = TRUE)
输出如下:
> summary(A, censored = TRUE)
Call: survfit(formula = Surv(time, status) ~ gender)
gender=Female
time n.risk n.event survival std.err lower 95% CI upper 95% CI
166 5 1 0.8 0.179 0.516 1
218 4 1 0.6 0.219 0.293 1
310 3 1 0.4 0.219 0.137 1
361 2 0 0.4 0.219 0.137 1
1010 1 0 0.4 0.219 0.137 1
gender=Male
time n.risk n.event survival std.err lower 95% CI upper 95% CI
210 5 1 0.800 0.179 0.516 1
306 4 0 0.800 0.179 0.516 1
455 3 1 0.533 0.248 0.214 1
883 2 0 0.533 0.248 0.214 1
1022 1 0 0.533 0.248 0.214 1
我的问题是,有什么方法可以将输出分成男性和女性。例如:
output_Female <- ?????
output_Female
output_Female
time n.risk n.event survival std.err lower 95% CI upper 95% CI
166 5 1 0.8 0.179 0.516 1
218 4 1 0.6 0.219 0.293 1
310 3 1 0.4 0.219 0.137 1
361 2 0 0.4 0.219 0.137 1
1010 1 0 0.4 0.219 0.137 1
output_Male <- ?????
output_Male
output_Male
time n.risk n.event survival std.err lower 95% CI upper 95% CI
166 5 1 0.8 0.179 0.516 1
218 4 1 0.6 0.219 0.293 1
310 3 1 0.4 0.219 0.137 1
361 2 0 0.4 0.219 0.137 1
1010 1 0 0.4 0.219 0.137 1
答案 0 :(得分:2)
以下是使用tidy
library(broom)
library(dplyr)
tidy(A, censored = TRUE) %>%
split(.$strata)
或base R
txt <- capture.output(summary(A, censored = TRUE))
ind <- cumsum(grepl("gender=", txt))
lst <- lapply(split(txt[ind >0], ind[ind >0]), function(x)
read.table(text = x[-(1:2)], header = FALSE))
nm1 <- scan(text= gsub("\\s+[0-9]|%\\s+", ".", txt[4]), quiet = TRUE, what = "")
lst <- lapply(lst, setNames, nm1)