我有一个包含订单数据的数据框,每个订单都有多个包存储为逗号分隔的字符串[package
& package_code
]列
我想拆分包数据并为每个包创建一行,包括订单详细信息
以下是输入数据框的示例:
import pandas as pd
df = pd.DataFrame({"order_id":[1,3,7],"order_date":["20/5/2018","22/5/2018","23/5/2018"], "package":["p1,p2,p3","p4","p5,p6"],"package_code":["#111,#222,#333","#444","#555,#666"]})
我怎么能用熊猫做到这一点?
答案 0 :(得分:19)
这适用于任何数量的这样的列。本质是使用str.split
的一个小堆栈 - 卸载魔法。
(df.set_index(['order_date', 'order_id'])
.stack()
.str.split(',', expand=True)
.stack()
.unstack(-2)
.reset_index(-1, drop=True)
.reset_index()
)
order_date order_id package package_code
0 20/5/2018 1 p1 #111
1 20/5/2018 1 p2 #222
2 20/5/2018 1 p3 #333
3 22/5/2018 3 p4 #444
4 23/5/2018 7 p5 #555
5 23/5/2018 7 p6 #666
还有另一个涉及chain
的高性能替代方案,但您需要明确地链接并重复每一列(有很多列的问题)。选择最适合您问题描述的内容,因为没有单一答案。
<强>详情
首先,将不要触摸的列设置为索引。
df.set_index(['order_date', 'order_id'])
package package_code
order_date order_id
20/5/2018 1 p1,p2,p3 #111,#222,#333
22/5/2018 3 p4 #444
23/5/2018 7 p5,p6 #555,#666
接下来,stack
行。
_.stack()
order_date order_id
20/5/2018 1 package p1,p2,p3
package_code #111,#222,#333
22/5/2018 3 package p4
package_code #444
23/5/2018 7 package p5,p6
package_code #555,#666
dtype: object
我们现在有一个系列。所以请在逗号上调用str.split
。
_.str.split(',', expand=True)
0 1 2
order_date order_id
20/5/2018 1 package p1 p2 p3
package_code #111 #222 #333
22/5/2018 3 package p4 None None
package_code #444 None None
23/5/2018 7 package p5 p6 None
package_code #555 #666 None
我们需要摆脱NULL值,所以再次调用stack
。
_.stack()
order_date order_id
20/5/2018 1 package 0 p1
1 p2
2 p3
package_code 0 #111
1 #222
2 #333
22/5/2018 3 package 0 p4
package_code 0 #444
23/5/2018 7 package 0 p5
1 p6
package_code 0 #555
1 #666
dtype: object
我们几乎就在那里。现在我们希望索引的第二个最后一个级别成为我们的列,因此使用unstack(-2)
(第二个级别为unstack
)进行取消堆栈
_.unstack(-2)
package package_code
order_date order_id
20/5/2018 1 0 p1 #111
1 p2 #222
2 p3 #333
22/5/2018 3 0 p4 #444
23/5/2018 7 0 p5 #555
1 p6 #666
使用reset_index
摆脱多余的最后一级:
_.reset_index(-1, drop=True)
package package_code
order_date order_id
20/5/2018 1 p1 #111
1 p2 #222
1 p3 #333
22/5/2018 3 p4 #444
23/5/2018 7 p5 #555
7 p6 #666
最后,
_.reset_index()
order_date order_id package package_code
0 20/5/2018 1 p1 #111
1 20/5/2018 1 p2 #222
2 20/5/2018 1 p3 #333
3 22/5/2018 3 p4 #444
4 23/5/2018 7 p5 #555
5 23/5/2018 7 p6 #666
答案 1 :(得分:5)
以下使用numpy.repeat
和itertools.chain
的方式。从概念上讲,这正是您想要做的:重复一些值,链接其他值。建议用于少量列,否则基于stack
的方法可能会更好。
import numpy as np
from itertools import chain
# return list from series of comma-separated strings
def chainer(s):
return list(chain.from_iterable(s.str.split(',')))
# calculate lengths of splits
lens = df['package'].str.split(',').map(len)
# create new dataframe, repeating or chaining as appropriate
res = pd.DataFrame({'order_id': np.repeat(df['order_id'], lens),
'order_date': np.repeat(df['order_date'], lens),
'package': chainer(df['package']),
'package_code': chainer(df['package_code'])})
print(res)
order_id order_date package package_code
0 1 20/5/2018 p1 #111
0 1 20/5/2018 p2 #222
0 1 20/5/2018 p3 #333
1 3 22/5/2018 p4 #444
2 7 23/5/2018 p5 #555
2 7 23/5/2018 p6 #666
答案 2 :(得分:4)
接近冷的方法:-)
df.set_index(['order_date','order_id']).apply(lambda x : x.str.split(',')).stack().apply(pd.Series).stack().unstack(level=2).reset_index(level=[0,1])
Out[538]:
order_date order_id package package_code
0 20/5/2018 1 p1 #111
1 20/5/2018 1 p2 #222
2 20/5/2018 1 p3 #333
0 22/5/2018 3 p4 #444
0 23/5/2018 7 p5 #555
1 23/5/2018 7 p6 #666
答案 3 :(得分:2)
看看今天的熊猫0.25版本: https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.25.0.html#series-explode-to-split-list-like-values-to-rows
df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1}, {'var1': 'd,e,f', 'var2': 2}])
df.assign(var1=df.var1.str.split(',')).explode('var1').reset_index(drop=True)
答案 4 :(得分:0)
鉴于explode
只会影响列表列,一个简单的解决方案是:
# Convert columns of interest to list columns
d["package"] = d["package"].str.split(",")
d["package_code"] = d["package_code"].str.split(",")
# Explode the entire data frame
d = d.apply( pandas.Series.explode )
优势:
缺点: