在pandas数据帧中将单元格拆分为多行

时间:2018-06-06 23:57:41

标签: python pandas dataframe

我有一个包含订单数据的数据框,每个订单都有多个包存储为逗号分隔的字符串[package& package_code]列

我想拆分包数据并为每个包创建一行,包括订单详细信息

以下是输入数据框的示例:

import pandas as pd
df = pd.DataFrame({"order_id":[1,3,7],"order_date":["20/5/2018","22/5/2018","23/5/2018"], "package":["p1,p2,p3","p4","p5,p6"],"package_code":["#111,#222,#333","#444","#555,#666"]})

Input Dataframe

这就是我想要实现的输出: Output

我怎么能用熊猫做到这一点?

5 个答案:

答案 0 :(得分:19)

这适用于任何数量的这样的列。本质是使用str.split的一个小堆栈 - 卸载魔法。

(df.set_index(['order_date', 'order_id'])
   .stack()
   .str.split(',', expand=True)
   .stack()
   .unstack(-2)
   .reset_index(-1, drop=True)
   .reset_index()
)

  order_date  order_id package package_code
0  20/5/2018         1      p1         #111
1  20/5/2018         1      p2         #222
2  20/5/2018         1      p3         #333
3  22/5/2018         3      p4         #444
4  23/5/2018         7      p5         #555
5  23/5/2018         7      p6         #666

还有另一个涉及chain的高性能替代方案,但您需要明确地链接并重复每一列(有很多列的问题)。选择最适合您问题描述的内容,因为没有单一答案。

<强>详情

首先,将不要触摸的列设置为索引。

df.set_index(['order_date', 'order_id'])

                      package    package_code
order_date order_id                          
20/5/2018  1         p1,p2,p3  #111,#222,#333
22/5/2018  3               p4            #444
23/5/2018  7            p5,p6       #555,#666

接下来,stack行。

_.stack()

order_date  order_id              
20/5/2018   1         package               p1,p2,p3
                      package_code    #111,#222,#333
22/5/2018   3         package                     p4
                      package_code              #444
23/5/2018   7         package                  p5,p6
                      package_code         #555,#666
dtype: object

我们现在有一个系列。所以请在逗号上调用str.split

_.str.split(',', expand=True)

                                     0     1     2
order_date order_id                               
20/5/2018  1        package         p1    p2    p3
                    package_code  #111  #222  #333
22/5/2018  3        package         p4  None  None
                    package_code  #444  None  None
23/5/2018  7        package         p5    p6  None
                    package_code  #555  #666  None

我们需要摆脱NULL值,所以再次调用stack

_.stack()

order_date  order_id                 
20/5/2018   1         package       0      p1
                                    1      p2
                                    2      p3
                      package_code  0    #111
                                    1    #222
                                    2    #333
22/5/2018   3         package       0      p4
                      package_code  0    #444
23/5/2018   7         package       0      p5
                                    1      p6
                      package_code  0    #555
                                    1    #666
dtype: object

我们几乎就在那里。现在我们希望索引的第二个最后一个级别成为我们的列,因此使用unstack(-2)(第二个级别为unstack)进行取消堆栈

_.unstack(-2)

                      package package_code
order_date order_id                       
20/5/2018  1        0      p1         #111
                    1      p2         #222
                    2      p3         #333
22/5/2018  3        0      p4         #444
23/5/2018  7        0      p5         #555
                    1      p6         #666

使用reset_index摆脱多余的最后一级:

_.reset_index(-1, drop=True)

                    package package_code
order_date order_id                     
20/5/2018  1             p1         #111
           1             p2         #222
           1             p3         #333
22/5/2018  3             p4         #444
23/5/2018  7             p5         #555
           7             p6         #666

最后,

_.reset_index()

  order_date  order_id package package_code
0  20/5/2018         1      p1         #111
1  20/5/2018         1      p2         #222
2  20/5/2018         1      p3         #333
3  22/5/2018         3      p4         #444
4  23/5/2018         7      p5         #555
5  23/5/2018         7      p6         #666

答案 1 :(得分:5)

以下使用numpy.repeatitertools.chain的方式。从概念上讲,这正是您想要做的:重复一些值,链接其他值。建议用于少量列,否则基于stack的方法可能会更好。

import numpy as np
from itertools import chain

# return list from series of comma-separated strings
def chainer(s):
    return list(chain.from_iterable(s.str.split(',')))

# calculate lengths of splits
lens = df['package'].str.split(',').map(len)

# create new dataframe, repeating or chaining as appropriate
res = pd.DataFrame({'order_id': np.repeat(df['order_id'], lens),
                    'order_date': np.repeat(df['order_date'], lens),
                    'package': chainer(df['package']),
                    'package_code': chainer(df['package_code'])})

print(res)

   order_id order_date package package_code
0         1  20/5/2018      p1         #111
0         1  20/5/2018      p2         #222
0         1  20/5/2018      p3         #333
1         3  22/5/2018      p4         #444
2         7  23/5/2018      p5         #555
2         7  23/5/2018      p6         #666

答案 2 :(得分:4)

接近冷的方法:-)

df.set_index(['order_date','order_id']).apply(lambda x : x.str.split(',')).stack().apply(pd.Series).stack().unstack(level=2).reset_index(level=[0,1])
Out[538]: 
  order_date  order_id package package_code
0  20/5/2018         1      p1         #111
1  20/5/2018         1      p2         #222
2  20/5/2018         1      p3         #333
0  22/5/2018         3      p4         #444
0  23/5/2018         7      p5         #555
1  23/5/2018         7      p6         #666

答案 3 :(得分:2)

看看今天的熊猫0.25版本: https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.25.0.html#series-explode-to-split-list-like-values-to-rows

df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1}, {'var1': 'd,e,f', 'var2': 2}])
df.assign(var1=df.var1.str.split(',')).explode('var1').reset_index(drop=True)

答案 4 :(得分:0)

鉴于explode只会影响列表列,一个简单的解决方案是:

# Convert columns of interest to list columns
d["package"]      = d["package"].str.split(",")
d["package_code"] = d["package_code"].str.split(",")

# Explode the entire data frame
d = d.apply( pandas.Series.explode )

优势

  • 避免将核心数据移动到索引中以“避免出现问题”,因此当数据包含重复项时,不会因“重复索引”错误而失败。

缺点

  • 仅当数据中没有列表列时才有效(尽管几乎总是如此)。