我想计算RollingGroupby对象的加权平均值。不幸的是,我收到了一个错误:
np.random.seed(9999)
df = pd.DataFrame(np.random.random(20).reshape(10, 2), columns = ['val1', 'val2'])
df['id'] = np.repeat([1, 2], 5)
df['wt'] = [1, 2] * 5
def weighted_average(data, value, weight):
return np.average(data[value], weights = data[weight], axis = 0)
dfwavg = df.groupby('id')[['val1', 'wt']]\
.rolling(window=2, min_periods=1)\
.apply(weighted_average, 'wt')
这是我的代码:
apply()
有人知道这是什么问题吗?感谢。
修改
如果解决方案使用现有结构(使用group.by.rolling.apply)会很棒。换句话说,最好的选择可能是将修改过的函数嵌套在static void Main(string[] args)
{
int result = 0;
Console.WriteLine("Give me a number over 5 bro");
int x = int.Parse(Console.ReadLine());
try{
result = AddNumbers(x, 5);
Console.WriteLine(result);
}catch(Exception e)
{
Console.WriteLine(e.Message);
}
Console.WriteLine("Press enter to close...");
Console.ReadLine();
}
public static int AddNumbers(int number1, int number2)
{
int result = number1 + number2;
if (result > 10)
{
return result;
}
else throw new Exception("brah I've told ya that I want more than 5");
}
。
答案 0 :(得分:0)
喜欢这个?
pd.concat([(x.val1*x.wt).rolling(window=2,min_periods=1).sum()/x.wt.rolling(window=2,min_periods=1).sum() for _,x in df.groupby('id')])
Out[592]:
0 0.823389
1 0.295437
2 0.072459
3 0.333050
4 0.445683
5 0.913049
6 0.704820
7 0.317114
8 0.325059
9 0.179366
dtype: float64