我有一个数据框AbstractCloudBigtableTableDoFn
,其中包含列和字符串值。
我的目标是创建一个数据框df
,其列代表final_df
列的所有可能组合,包括它们的值(理想情况下用df
分隔[不在示例代码中])
示例代码:
_
是否有一种Pythonic方法可以动态创建这样的import pandas as pd
from itertools import combinations
d = {'AAA': ["xzy", "gze"], 'BBB': ["abc", "hja"], 'CCC': ["dfg", "hza"], 'DDD': ["hij", "klm"], 'EEE': ["lal", "opa"]}
df = pd.DataFrame(data=d)
# two combinations
cc = list(combinations(df.columns,2))
df_2 = pd.concat([df[c[0]] + df[c[1]] for c in cc], axis=1, keys=cc)
df_2.columns = df_2.columns.map(''.join)
# three attributes
del cc
cc = list(combinations(df.columns,3))
df_3 = pd.concat([df[c[0]] + df[c[1]] + df[c[2]] for c in cc], axis=1, keys=cc)
df_3.columns = df_3.columns.map(''.join)
# four attributes
del cc
cc = list(combinations(df.columns,4))
df_4 = pd.concat([df[c[0]] + df[c[1]] + df[c[2]] + df[c[3]] for c in cc], axis=1, keys=cc)
df_4.columns = df_4.columns.map(''.join)
# five attributes
del cc
cc = list(combinations(df.columns,5))
df_5 = pd.concat([df[c[0]] + df[c[1]] + df[c[2]] + df[c[3]] + df[c[4]] for c in cc], axis=1, keys=cc)
df_5.columns = df_5.columns.map(''.join)
# join dataframes
dfs = [df, df_2, df_3, df_4, df_5]
final_df = dfs[0].join(dfs[1:])
数据框,具体取决于列数?
答案 0 :(得分:1)
我想到了一个解决方案,但是......列名不会改变。
def combodf(dfx, x):
d = (['_'.join(i) for i in zip(*a)] for a in combinations(df.T.values.tolist(), x))
return pd.DataFrame(d).T
final_df = pd.concat([df, *(combodf(df, i) for i in range(2,6))], 1)
但是看看你的"栏"结构,将它们作为价值观更有意义。所以这是一个解决方法,我们将列移动到最后一行。
import pandas as pd
from itertools import combinations
def combodf(dfx, x):
d = [['_'.join(i) for i in zip(*a)] for a in combinations(df.T.values.tolist(), x)]
return pd.DataFrame(d).T
d = {
'AAA': ["xzy", "gze"],
'BBB': ["abc", "hja"],
'CCC': ["dfg", "hza"],
'DDD': ["hij", "klm"],
'EEE': ["lal", "opa"]
}
df = pd.DataFrame(data=d)
df.loc[len(df)] = df.columns # insert columns last row
df = pd.concat([df, *(combodf(df, i) for i in range(2,6))], 1)
df.columns = df.tail(1).values[0] # make last row columns
df = df.drop(2) # drop last row
比较:
print((df == final_df).all().all()) # True
print((df.columns == final_df.columns).all()) # True