我有一个PySpark数据帧:
catalogid | 1123798
catalogpath | [{"1123798":"Other, poets"},{"1112194":" Poetry for kids"}
使用架构:
StructType(List(StructField(catalogid,StringType,true),StructField(catalogpath,StringType,true)))
我需要从catalogpath列中只获取文本(值) - 类似这样:
catalogid | 1123798
catalog_desc| "Other, poets"; "Poetry for kids"
答案 0 :(得分:1)
您可以使用JSON解析器:
import json
from itertools import chain
from pyspark.sql.functions import udf, concat_ws
@udf("array<string>")
def parse(s):
try:
return list(chain.from_iterable(x.values() for x in json.loads(s)))
except:
pass
df = spark.createDataFrame(
[(1123798, """[{"1123798":"Other, poets"},{"1112194":" Poetry for kids"}]""")],
("catalogid", "catalogpath")
)
result = df.select("catalogid", parse("catalogpath").alias("catalog_desc"))
result.show(truncate=False)
# +---------+----------------------------------+
# |catalogid|catalog_desc |
# +---------+----------------------------------+
# |1123798 |[Other, poets, Poetry for kids]|
# +---------+----------------------------------+
如果您想要一个字符串,可以应用concat_ws
:
result.withColumn("catalog_desc", concat_ws(";", "catalog_desc")).show(truncate=False)
# +---------+-------------------------------+
# |catalogid|catalog_desc |
# +---------+-------------------------------+
# |1123798 |Other, poets; Poetry for kids|
# +---------+-------------------------------+
答案 1 :(得分:0)
带有字符串函数的简单udf
函数应该可以帮到你
import re
from pyspark.sql import functions as f
from pyspark.sql import types as t
def parseString(str):
return ";".join([re.sub("[}\{]", "", x[x.index(":")+1:]) for x in str.split("},{")])
parseUdf = f.udf(parseString, t.StringType())
df.withColumn('1123798', parseUdf(df['1123798'])).show(truncate=False)
应该给你
+-----------+----------------------------------+
|catalogid |1123798 |
+-----------+----------------------------------+
|catalogpath|"Other, poets";" Poetry for kids"|
+-----------+----------------------------------+
我希望答案很有帮助