我正在尝试构建一个动画条形图,其中ggplot2
和magick
正在以“每日一天”为基础增长。不幸的是,我的数据集中有数以万计的条目(几年和不同类别的每一天的日期),这使得处理速度非常慢。因此,我正在使用snow
包来加快处理时间。
但是,在分割数据并在群集中调用ggplot()
时,我遇到了麻烦。
magick
要求为动画的每个日期拆分数据,snow
要求按群集拆分以进行并行处理。所以,我得到一个列表列表,这会在ggplot()
内调用clusterApply()
时导致问题。列表的结构当然取决于我分割数据的顺序(参见示例代码中的版本1和2),但没有版本导致成功。
我想在使用data$date
时访问列表元素不起作用,因为现在列表中有更多级别。
所以,我的问题是:是否可以通过ggplot2
以这种方式使用并行处理来构建动画图形?
这是示例代码可视化我的问题(我试图尽可能地构建它):
########################################################################
# setup
########################################################################
library(parallel)
library(snow)
library(ggplot2)
library(magick)
# creating some sample data for one year
# 4 categories; each category has a specific value per day
set.seed(1)
x <- data.frame(
rep(as.Date((Sys.Date()-364):Sys.Date(), origin="1970-01-01"),4),
c(rep("cat01",length.out=365),
rep("cat02",length.out=365),
rep("cat03",length.out=365),
rep("cat04",length.out=365)),
sample(0:50,365*4, replace=TRUE)
)
colnames(x) <- c("date", "category", "value")
x$category <- factor(x$category)
# creating a cumulative measure making the graphs appear "growing"
x$cumsum <- NA
for(i in levels(x$category)){
x$cumsum[x$category == i] <- cumsum(x$value[x$category == i])
}
x <- x[order(x$date),]
# number of cores
cores <- detectCores()
# clustering
cl <- makeCluster(cores, type="SOCK")
# adding a grouping-variable to the data for each cluster
x$group <- rep(1:cores, length.out = nrow(x))
########################################################################
# splitting the data
########################################################################
# V1: worker first, plotting second
# splitting data for the worker
datasplit01 <- split(x, x$group)
# splitting data for plotting
datalist01 <- clusterApply(cl, datasplit01, function(x){split(x, x$date)})
########################################################################
# V2: plotting first, worker second
# splitting data for plotting
datasplit02 <- split(x, x$date)
# splitting data for the worker
datalist02 <- clusterApply(cl, datasplit02, function(x){split(x, x$group)})
########################################################################
# conventional plotting
########################################################################
# plotting the whole data works fine
ggplot(x)+
geom_bar(aes(category, value), stat = "identity")
########################################################################
# conventional animation with ggplot2
########################################################################
# animation per date works, but pretty slowly
# opening magick-device
img <- image_graph(1000, 700, res = 96)
# plotting
# replace the second line with first line if the code is too slow and if
# you like to get an impression of what the plot should look like
# out <- lapply(datasplit02[1:50], function(data){ # line 1: downscaled dataset
out <- lapply(datasplit02, function(data){ # line 2: full dataset
plot <- ggplot(data)+
geom_bar(aes(category, cumsum), stat = "identity")+
# holding breaks and limits constant per plot
scale_y_continuous(expand = c(0,0),
breaks = seq(0,max(x$cumsum)+500,500),
limits = c(0,max(x$cumsum)+500))+
ggtitle(data$date)
print(plot)
})
dev.off()
# animation
animation <- image_animate(img, fps = 5)
animation
########################################################################
# parallel process plotting
########################################################################
# animation per date in parallel processing does not work, probably
# due to ggplot not working with a list of lists
# opening magick-device
img <- image_graph(1000, 700, res = 96)
# plotting
out <- clusterApply(cl, datalist01, function(data){
plot <- ggplot(data)+
geom_bar(aes(category, cumsum), stat = "identity")+
# holding breaks and limits constant per plot
scale_y_continuous(expand = c(0,0),
breaks = seq(0,max(x$cumsum)+500,500),
limits = c(0,max(x$cumsum)+500))+
ggtitle(data$date)
print(plot)
})
dev.off()
# animation
animation <- image_animate(img, fps = 5)
animation
感谢您的建议!
更新:使用降雪,代码更短,我没有得到相同的错误,但设备仍然没有产生情节。
########################################################################
# snowfall version
########################################################################
library(parallel)
library(snowfall)
library(ggplot2)
library(magick)
# creating some sample data for one year
# 4 categories; each category has a specific value per day
set.seed(1)
x <- data.frame(
rep(as.Date((Sys.Date()-364):Sys.Date(), origin="1970-01-01"),4),
c(rep("cat01",length.out=365),
rep("cat02",length.out=365),
rep("cat03",length.out=365),
rep("cat04",length.out=365)),
sample(0:50,365*4, replace=TRUE)
)
colnames(x) <- c("date", "category", "value")
x$category <- factor(x$category)
# creating a cumulative measure making the graphs appear "growing"
x$cumsum <- NA
for(i in levels(x$category)){
x$cumsum[x$category == i] <- cumsum(x$value[x$category == i])
}
x <- x[order(x$date),]
# number of cores
cores <- detectCores()
# clustering
sfInit(parallel = TRUE, cpus = cores, type = "SOCK")
# splitting data for plotting
datalist <- split(x, x$date)
# making everything accessible in the cluster
sfExportAll()
sfLibrary(ggplot2)
sfLibrary(magick)
# opening magick-device
img <- image_graph(1000, 700, res = 96)
# plotting
out <- sfLapply(datalist, function(data){
plot <- ggplot(data)+
geom_bar(aes(category, cumsum), stat = "identity")+
# holding breaks and limits constant per plot
scale_y_continuous(expand = c(0,0),
breaks = seq(0,max(x$cumsum)+500,500),
limits = c(0,max(x$cumsum)+500))+
ggtitle(data$date)
plot
})
dev.off()
# animation
animation <- image_animate(img, fps = 5)
animation
使用时
img <- image_graph(1000, 700, res = 96)
out
dev.off()
animation <- image_animate(img, fps = 5)
animation
制作情节。但是,调用out
非常慢,这就是为什么我必须避免使用此选项才能使其正常工作。
答案 0 :(得分:2)
所以,我的解决方案:
在ncores
期间分割日期
获取每个时段的情节并将其另存为GIF
回读所有GIF并将它们合并
########################################################################
# setup
########################################################################
# creating some sample data for one year
# 4 categories; each category has a specific value per day
set.seed(1)
x <- data.frame(
rep(as.Date((Sys.Date()-364):Sys.Date(), origin="1970-01-01"),4),
c(rep("cat01",length.out=365),
rep("cat02",length.out=365),
rep("cat03",length.out=365),
rep("cat04",length.out=365)),
sample(0:50,365*4, replace=TRUE)
)
colnames(x) <- c("date", "category", "value")
# creating a cumulative measure making the graphs appear "growing"
library(dplyr)
x <- x %>%
as_tibble() %>%
arrange(date) %>%
mutate(date = as.character(date)) %>%
group_by(category) %>%
mutate(cumsum = cumsum(value))
y_max <- max(x$cumsum) + 500
library(doParallel)
all_dates <- unique(x$date)
ncores <- detectCores() - 1
ind_cluster <- sort(rep_len(1:ncores, length(all_dates)))
date_cluster <- split(all_dates, ind_cluster)
registerDoParallel(cl <- makeCluster(ncores))
tmp <- tempfile()
files <- foreach(ic = 1:ncores, .packages = c("tidyverse", "magick")) %dopar% {
img <- image_graph(1000, 700, res = 96)
x %>%
filter(date %in% date_cluster[[ic]]) %>%
group_by(date) %>%
do(
plot = ggplot(.) +
geom_col(aes(category, cumsum)) +
scale_y_continuous(expand = c(0, 0),
breaks = seq(0, y_max, 500),
limits = c(0, y_max))
) %>%
pmap(function(date, plot) {
print(plot + ggtitle(date))
NULL
})
dev.off()
image_write(image_animate(img, fps = 5), paste0(tmp, ic, ".gif"))
}
stopCluster(cl)
test <- do.call(c, lapply(files, magick::image_read))
test
答案 1 :(得分:1)
我会
library(tidyverse)
library(gganimate)
x %>%
as.tibble() %>%
arrange(date) %>%
group_by(category) %>%
mutate(Sum=cumsum(value)) %>%
ggplot(aes(category, Sum, fill = category)) +
geom_col(position = 'identity') +
ggtitle("{frame_time}") +
transition_time(date) +
ease_aes('linear')
anim_save("GIF.gif")
如果要处理大量数据,我建议将转换时间增加到几个月而不是几天。