我想使用一个返回绘图和输入参数的函数制作3D绘图。 这是我的函数代码:
def cumulative(moment):
bins = np.zeros(32)
x = upper_bin
for i in range(32):
bins[i] = burst_average[moment, 0:i+1].sum()
plt.ylim(ymax = 1000)
plt.xlabel('grain size (um)')
plt.ylabel('concentration (uL/L)')
plt.title('grain size distribution over time')
plt.plot(x, bins, c = 'b', label=dates[i])
return
import ipywidgets as widgets
from ipywidgets import interact
interact(cumulative, moment=widgets.FloatSlider(min = int(0), max = int(nr_burst-1), step = 1, description = 'moment'));
其中x
是32个值的列表,bins
是一个包含32个值的数组,每个moment
都会更改。总共制作了nr_burst图,大约是2017年。
小部件可以工作,但是我想在我的报告中包含它,所以我想要一个3D图。
我试过像
这样的东西from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits import mplot3d
b0 = np.linspace(0, nr_burst-1, nr_burst)
b= []
for i in range(len(b0)):
b.append(int(b0[i]))
ax.scatter3D(cumulative(b), b)
这不起作用,给出错误ValueError: Arguments 'xs' and 'ys' must be of same size.
我还尝试使用该函数返回x
和b
以及plot
ax.scatter3D(cumulative(b)[0], b, cumulative(b)[1])
其中包含错误TypeError: 'NoneType' object is not subscriptable.
答案 0 :(得分:0)
绘制原始数据后使用:
ax = plt.gca() # get the axis handle of the current graphic artist
data_2d = ax.lines[0] # this just extracts the first dataset
x,y = data_2d.get_xdata(), data_2d.get_ydata() #this will be your x and y data
使用您的原始代码可以插入,如:
ax.scatter3D(x, b, y)
第二个选项
修改原始函数以返回轴手柄。
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def cumulative(moment):
fig, ax = plt.subplots()
bins = np.cumsum(np.arange(moment))
x = np.arange(moment)
ax.plot(x, bins, c = 'b')
ax.set_xlabel('grain size (um)')
ax.set_ylabel('concentration (uL/L)')
ax.set_title('grain size distribution over time')
ax.set_ylim(ymax = bins.max())
return fig, ax
b = 32 #just a random scalar to test
fig, ax = cumulative(b) #call the function and assign the returning values
data_2d = ax.lines[0] # get your data
x,y = data_2d.get_xdata(), data_2d.get_ydata() #your data separated for x and y
plot3d = plt.figure()
ax3d = plot3d.add_subplot(111, projection='3d')
ax3d.scatter(x,b,y)