我在PySpark中有一个如下所示的数据框。我想从以下数据框中选择serial_num
,devicetype
,device_model
和distinct of timestamp for each serial_num
:
+-------------+-----------------+---------------+------------------------+
| serial_num | devicetype | device_model | timestamp |
+-------------+-----------------+---------------+------------------------+
| 58172A0396 | | | 2003-01-02 17:37:15.0 |
| 58172A0396 | | | 2003-01-02 17:37:15.0 |
| 46C5Y00693 | Mac Pro | Mac PC | 2018-01-03 17:17:23.0 |
| 1737K7008F | Windows PC | Windows PC | 2018-01-05 11:12:31.0 |
| 1737K7008F | Network Device | Unknown | 2018-01-05 11:12:31.0 |
| 1737K7008F | Network Device | Unknown | 2018-01-05 11:12:31.0 |
| 1737K7008F | Network Device | | 2018-01-06 03:12:52.0 |
| 1737K7008F | Windows PC | Windows PC | 2018-01-06 03:12:52.0 |
| 1737K7008F | Network Device | Unknown | 2018-01-06 03:12:52.0 |
| 1665NF01F3 | Network Device | Unknown | 2018-01-07 03:42:34.0 |
+----------------+-----------------+---------------+---------------------+
我试过以下
df1 = df.select('serial_num', 'devicetype', 'device_model', f.count('distinct timestamp').over(Window.partitionBy('serial_num')).alias('val')
我想要的结果是:
+-------------+-----------------+---------------+-----+
| serial_num | devicetype | device_model |count|
+-------------+-----------------+---------------+-----+
| 58172A0396 | | | 1 |
| 58172A0396 | | | 1 |
| 46C5Y00693 | Mac Pro | Mac PC | 1 |
| 1737K7008F | Windows PC | Windows PC | 2 |
| 1737K7008F | Network Device | Unknown | 2 |
| 1737K7008F | Network Device | Unknown | 2 |
| 1737K7008F | Network Device | | 2 |
| 1737K7008F | Windows PC | Windows PC | 2 |
| 1737K7008F | Network Device | Unknown | 2 |
| 1665NF01F3 | Network Device | Unknown | 1 |
+-------------+-----------------+---------------+-----+
我怎样才能做到这一点?
答案 0 :(得分:1)
Unfortunatly countDistinct
is not supported for windows. However, a combination of collect_set
and size
can be used to acheive the same end result. This is only supported in Spark 2.0+ versions, use as follows:
import pyspark.sql.funcions as F
w = Window.partitionBy('serial_num')
df1 = df.select(..., F.size(F.collect_set('timestamp').over(w)).alias('count'))
For older Spark versions, what you can do is use groupby
and countDistinct
to create a new dataframe with all the counts. Then join
this dataframe together with the original one.
df2 = df.groupby('serial_num').agg(F.countDistinct('timestamp').alias('count'))
df1 = df.join(df2, 'serial_num')
答案 1 :(得分:1)
简单的groupBy和count将起作用。
val data=Array(("58172A0396","","","2003-01-02 17:37:15.0"),
("58172A0396","","","2003-01-02 17:37:15.0"),
("46C5Y00693"," Mac Pro","Mac PC","2018-01-03 17:17:23.0"),
("1737K7008F"," Windows PC","Windows PC","2018-01-05 11:12:31.0"),
("1737K7008F"," Network Device","Unknown","2018-01-05 11:12:31.0"),
("1737K7008F"," Network Device","Unknown","2018-01-05 11:12:31.0"),
("1737K7008F"," Network Device","","2018-01-06 03:12:52.0"),
("1737K7008F"," Windows PC","Windows PC","2018-01-06 03:12:52.0"),
("1737K7008F"," Network Device","Unknown","2018-01-06 03:12:52.0"),
("1665NF01F3"," Network Device","Unknown","2018-01-07 03:42:34.0"))
val rdd = sc.parallelize(data)
val df = rdd.toDF("serial_num","devicetype","device_model","timestamp")
val df1 = df.groupBy("timestamp","serial_num","devicetype","device_model").count