训练keras vgg16给出TypeError:不能pickle thread.lock对象

时间:2018-06-05 04:18:47

标签: tensorflow keras

我正在尝试使用4 GPU在imagenet上训练Keras VGG16模型。我也使用checkpointer回调来在每个纪元后以最高的准确度保存模型(为简洁起见,模型本身不包含在代码中):

   
from __future__ import print_function
import keras
from keras import optimizers
from keras.models import Sequential
from keras.layers import (
    Dense,
    Dropout,
    Activation,
    Flatten,
    Input,
    add,
    Activation,
    GlobalAveragePooling2D,
)
from keras.layers import (
    Conv2D,
    MaxPooling2D,
    ZeroPadding2D,
)
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import multi_gpu_model
from keras.callbacks import ModelCheckpoint
import scipy.io
import numpy as np

from keras.layers.normalization import BatchNormalization
from keras.initializers import he_normal

from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.loss = []
        self.acc    = []
        self.val_loss = []
        self.val_acc    = []

    def on_batch_end(self, batch, logs={}):
        self.loss.append(logs.get('loss'))
        self.acc.append(logs.get('acc'))
        self.val_loss.append(logs.get('val_loss'))
        self.val_acc.append(logs.get('val_acc'))


vgg19_model = build_vgg19_model(image_input_shape, num_classes, dropout, weight_decay)

adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, decay=1e-6)

# Replicates `model` on 4 GPUs.
# This assumes that your machine has 4 available GPUs.
parallel_model = multi_gpu_model(vgg19_model, gpus=4)
parallel_model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['acc'])

# this is the augmentation configuration we will use for training

train_datagen = ImageDataGenerator(
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest')

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='categorical')

print(image_input_shape)


history = LossHistory()
checkpointer = ModelCheckpoint(filepath='/home/user/programs/keras_imagenet/vgg16_imagenet.h5', monitor='val_acc', verbose=1, save_best_only=True)

parallel_model.fit_generator(train_generator, epochs=epochs, validation_data=validation_generator, callbacks=[history,checkpointer])

然后在尝试保存模型时出现以下错误,带有长堆栈跟踪:

Epoch 00001: val_acc improved from -inf to 0.07054, saving model to /home/user/programs/keras_imagenet/vgg16_imagenet.h5
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/home/user/programs/keras_imagenet/Imagenet_VGG_keras.py in <module>()
    220 checkpointer = ModelCheckpoint(filepath='/home/user/programs/keras_imagenet/vgg16_imagenet.h5', monitor='val_acc', verbose=1, save_best_only=True)
    221 
--> 222 parallel_model.fit_generator(train_generator, epochs=epochs, validation_data=validation_generator, callbacks=[history,checkpointer])
    223 
    224 #vgg19_model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))

/usr/local/lib/python2.7/dist-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
     89                 warnings.warn('Update your `' + object_name +
     90                               '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 91             return func(*args, **kwargs)
     92         wrapper._original_function = func
     93         return wrapper

/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   2266                         break
   2267 
-> 2268                 callbacks.on_epoch_end(epoch, epoch_logs)
   2269                 epoch += 1
   2270                 if callback_model.stop_training:

/usr/local/lib/python2.7/dist-packages/keras/callbacks.pyc in on_epoch_end(self, epoch, logs)
     75         logs = logs or {}
     76         for callback in self.callbacks:
---> 77             callback.on_epoch_end(epoch, logs)
     78 
     79     def on_batch_begin(self, batch, logs=None):

/usr/local/lib/python2.7/dist-packages/keras/callbacks.pyc in on_epoch_end(self, epoch, logs)
    445                             self.model.save_weights(filepath, overwrite=True)
    446                         else:
--> 447                             self.model.save(filepath, overwrite=True)
    448                     else:
    449                         if self.verbose > 0:

/usr/local/lib/python2.7/dist-packages/keras/engine/topology.pyc in save(self, filepath, overwrite, include_optimizer)
   2589         """
   2590         from ..models import save_model
-> 2591         save_model(self, filepath, overwrite, include_optimizer)
   2592 
   2593     def save_weights(self, filepath, overwrite=True):

/usr/local/lib/python2.7/dist-packages/keras/models.pyc in save_model(model, filepath, overwrite, include_optimizer)
    124         f.attrs['model_config'] = json.dumps({
    125             'class_name': model.__class__.__name__,
--> 126             'config': model.get_config()
    127         }, default=get_json_type).encode('utf8')
    128 

/usr/local/lib/python2.7/dist-packages/keras/engine/topology.pyc in get_config(self)
   2430             model_outputs.append([layer.name, new_node_index, tensor_index])
   2431         config['output_layers'] = model_outputs
-> 2432         return copy.deepcopy(config)
   2433 
   2434     @classmethod

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_list(x, memo)
    228     memo[id(x)] = y
    229     for a in x:
--> 230         y.append(deepcopy(a, memo))
    231     return y
    232 d[list] = _deepcopy_list

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_tuple(x, memo)
    235     y = []
    236     for a in x:
--> 237         y.append(deepcopy(a, memo))
    238     d = id(x)
    239     try:

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_tuple(x, memo)
    235     y = []
    236     for a in x:
--> 237         y.append(deepcopy(a, memo))
    238     d = id(x)
    239     try:

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_method(x, memo)
    262 
    263 def _deepcopy_method(x, memo): # Copy instance methods
--> 264     return type(x)(x.im_func, deepcopy(x.im_self, memo), x.im_class)
    265 _deepcopy_dispatch[types.MethodType] = _deepcopy_method
    266 

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_method(x, memo)
    262 
    263 def _deepcopy_method(x, memo): # Copy instance methods
--> 264     return type(x)(x.im_func, deepcopy(x.im_self, memo), x.im_class)
    265 _deepcopy_dispatch[types.MethodType] = _deepcopy_method
    266 

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_list(x, memo)
    228     memo[id(x)] = y
    229     for a in x:
--> 230         y.append(deepcopy(a, memo))
    231     return y
    232 d[list] = _deepcopy_list

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    188                             raise Error(
    189                                 "un(deep)copyable object of type %s" % cls)
--> 190                 y = _reconstruct(x, rv, 1, memo)
    191 
    192     memo[d] = y

/usr/lib/python2.7/copy.pyc in _reconstruct(x, info, deep, memo)
    332     if state is not None:
    333         if deep:
--> 334             state = deepcopy(state, memo)
    335         if hasattr(y, '__setstate__'):
    336             y.__setstate__(state)

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    161     copier = _deepcopy_dispatch.get(cls)
    162     if copier:
--> 163         y = copier(x, memo)
    164     else:
    165         try:

/usr/lib/python2.7/copy.pyc in _deepcopy_dict(x, memo)
    255     memo[id(x)] = y
    256     for key, value in x.iteritems():
--> 257         y[deepcopy(key, memo)] = deepcopy(value, memo)
    258     return y
    259 d[dict] = _deepcopy_dict

/usr/lib/python2.7/copy.pyc in deepcopy(x, memo, _nil)
    180                     reductor = getattr(x, "__reduce_ex__", None)
    181                     if reductor:
--> 182                         rv = reductor(2)
    183                     else:
    184                         reductor = getattr(x, "__reduce__", None)

TypeError: can't pickle thread.lock objects

任何帮助都非常感谢,谢谢!

1 个答案:

答案 0 :(得分:0)

您可以在Tensorflow-issues查看此问题。有些人将深度复制替换为复制,这似乎已经修复了它。但这个问题是去年的,所以也许你应该尝试升级到Python3.6以及TensorFlow和Keras的最新版本。

感谢。