我正在尝试将一些相对简单的条件组合到一个np.where子句中,但是在获取逻辑语法时遇到了麻烦。
我当前的数据框看起来像下面的df,有四列。我想添加两个列,命名如下,具有以下条件:
所需的输出低于 - df df_so_v2
自活动以来的几天 *查找具有相同ID的最新前一行,然后减去日期列 *如果没有最新值,请返回NA
变动。平均。值 条件1:如果Count = 0,NA 条件2:如果Count!= 0,找到最近的前一行,同时ID和Count!= 0,然后找到平均值的差异。值列。
但是,我正在构建简单的np.where查询,如下所示,并且不知道如何组合这种情况下所需的多个条件。
df['CASH'] = np.where(df['CASH'] != 0, df['CASH'] + commission , df['CASH'])
非常感谢你对此的帮助。
df_dict={'DateOf': ['2017-08-07','2017-08-07','2017-08-07','2017-08-04','2017-08-04','2017-08-04'
, '2017-08-03','2017-08-03','2017-08-03','2017-08-02','2017-08-02','2017-08-02','2017-08-01','2017-08-01','2017-08-01'],
'ID': ['553','559','914','553','559','914','553','559','914','553','559','914','553','559','914'], 'Count': [0, 4, 5, 0, 11, 10, 3, 9, 0,1,0,2,4,4,0],
'Avg. Value': [0,3.5,2.2,0,4.2,3.3,5.3,5,0,3,0,2,4.4,6.4,0]}
df_so=pd.DataFrame(df_dict)
df_dict_v2={'DateOf': ['2017-08-07','2017-08-07','2017-08-07','2017-08-04','2017-08-04','2017-08-04'
, '2017-08-03','2017-08-03','2017-08-03','2017-08-02','2017-08-02','2017-08-02','2017-08-01','2017-08-01','2017-08-01'],
'ID': ['553','559','914','553','559','914','553','559','914','553','559','914','553','559','914'], 'Count': [0, 4, 5, 0, 11, 10, 3, 9, 0,1,0,2,4,4,0],
'Avg. Value': [0,3.5,2.2,0,4.2,3.3,5.3,5,0,3,0,2,4.4,6.4,0],
'Days_since_activity': [4,3,1,1,1,2,1,2,1,1,1,1,'NA','NA','NA'],
'Chg. Avg Value': ['NA',-0.7,-1.1,'NA',-0.8,1.3,2.3,-1.4,'NA',-1.4,'NA','NA','NA','NA','NA']
}
df_so_v2=pd.DataFrame(df_dict_v2)
答案 0 :(得分:0)
Here is the answer to this part of the question. I need more clarification on the conditions of 2.
1) Days since activity *Find most recent prior row with same ID, then subtract dates column *If no most recent value, return NA
First you need to convert strings to datetime, then sort the dates in ascending order. Finally use .transform
to find the difference.
df_dict={'DateOf': ['2017-08-07','2017-08-07','2017-08-07','2017-08-04','2017-08-04','2017-08-04'
, '2017-08-03','2017-08-03','2017-08-03','2017-08-02','2017-08-02','2017-08-02','2017-08-01','2017-08-01','2017-08-01'],
'ID': ['553','559','914','553','559','914','553','559','914','553','559','914','553','559','914'], 'Count': [0, 4, 5, 0, 11, 10, 3, 9, 0,1,0,2,4,4,0],
'Avg. Value': [0,3.5,2.2,0,4.2,3.3,5.3,5,0,3,0,2,4.4,6.4,0]}
df_so = pd.DataFrame(df_dict)
df_so['DateOf'] = pd.to_datetime(df_so['DateOf'])
df_so.sort_values('DateOf', inplace=True)
df_so['Days_since_activity'] = df_so.groupby(['ID'])['DateOf'].transform(pd.Series.diff)
df_so.sort_index()
Edited based on your comment: Find the most recent previous day that does not have a count of Zero and calculate the difference.
df_dict={'DateOf': ['2017-08-07','2017-08-07','2017-08-07','2017-08-04','2017-08-04','2017-08-04'
, '2017-08-03','2017-08-03','2017-08-03','2017-08-02','2017-08-02','2017-08-02','2017-08-01','2017-08-01','2017-08-01'],
'ID': ['553','559','914','553','559','914','553','559','914','553','559','914','553','559','914'], 'Count': [0, 4, 5, 0, 11, 10, 3, 9, 0,1,0,2,4,4,0],
'Avg. Value': [0,3.5,2.2,0,4.2,3.3,5.3,5,0,3,0,2,4.4,6.4,0]}
df = pd.DataFrame(df_dict)
df['DateOf'] = pd.to_datetime(df['DateOf'], format='%Y-%m-%d')
df.sort_values(['ID','DateOf'], inplace=True)
df['Days_since_activity'] = df.groupby(['ID'])['DateOf'].diff()
mask = df.ID != df.ID.shift(1)
mask2 = df.groupby('ID').Count.shift(1) == 0
df['Days_since_activity'][mask] = np.nan
df['Days_since_activity'][mask2] = df.groupby(['ID'])['DateOf'].diff(2)
df['Chg. Avg Value'] = df.groupby(['ID'])['Avg. Value'].diff()
df['Chg. Avg Value'][mask2] = df.groupby(['ID'])['Avg. Value'].diff(2)
conditions = [((df['Count'] == 0)),]
choices = [np.nan,]
df['Chg. Avg Value'] = np.select(conditions, choices, default = df['Chg. Avg Value'])
# df = df.sort_index()
df
New unsorted Output for easy comparison:
DateOf ID Count Avg. Value Days_since_activity Chg. Avg Value
12 2017-08-01 553 4 4.4 NaT NaN
9 2017-08-02 553 1 3.0 1 days -1.4
6 2017-08-03 553 3 5.3 1 days 2.3
3 2017-08-04 553 0 0.0 1 days NaN
0 2017-08-07 553 0 0.0 4 days NaN
13 2017-08-01 559 4 6.4 NaT NaN
10 2017-08-02 559 0 0.0 1 days NaN
7 2017-08-03 559 9 5.0 2 days -1.4
4 2017-08-04 559 11 4.2 1 days -0.8
1 2017-08-07 559 4 3.5 3 days -0.7
14 2017-08-01 914 0 0.0 NaT NaN
11 2017-08-02 914 2 2.0 NaT NaN
8 2017-08-03 914 0 0.0 1 days NaN
5 2017-08-04 914 10 3.3 2 days 1.3
2 2017-08-07 914 5 2.2 3 days -1.1
index 11 should be NaT because the most current previous row has a count of zero and there is nothing else to compare it to