我在spark数据帧中有一个列'true_recoms':
-RECORD 17-----------------------------------------------------------------
item | 20380109
true_recoms | {"5556867":1,"5801144":5,"7397596":21}
我需要'爆炸'这个专栏来得到这样的东西:
item | 20380109
recom_item | 5556867
recom_cnt | 1
..............
item | 20380109
recom_item | 5801144
recom_cnt | 5
..............
item | 20380109
recom_item | 7397596
recom_cnt | 21
我尝试使用from_json,但它不起作用:
schema_json = StructType(fields=[
StructField("item", StringType()),
StructField("recoms", StringType())
])
df.select(col("true_recoms"),from_json(col("true_recoms"), schema_json)).show(5)
+--------+--------------------+------+
| item| true_recoms|true_r|
+--------+--------------------+------+
|31746548|{"32731749":3,"31...| [,]|
|17359322|{"17359392":1,"17...| [,]|
|31480894|{"31480598":1,"31...| [,]|
| 7265665|{"7265891":1,"503...| [,]|
|31350949|{"32218698":1,"31...| [,]|
+--------+--------------------+------+
only showing top 5 rows
答案 0 :(得分:4)
The schema is incorrectly defined. You declare to be as struct
with two string fields
item
recoms
while neither field is present in the document.
Unfortunately from_json
can take return only structs or array of structs so redefining it as
MapType(StringType(), LongType())
is not an option.
Personally I would use an udf
from pyspark.sql.functions import udf, explode
import json
@udf("map<string, bigint>")
def parse(s):
try:
return json.loads(s)
except json.JSONDecodeError:
pass
which can be applied like this
df = spark.createDataFrame(
[(31746548, """{"5556867":1,"5801144":5,"7397596":21}""")],
("item", "true_recoms")
)
df.select("item", explode(parse("true_recoms")).alias("recom_item", "recom_cnt")).show()
# +--------+----------+---------+
# | item|recom_item|recom_cnt|
# +--------+----------+---------+
# |31746548| 5801144| 5|
# |31746548| 7397596| 21|
# |31746548| 5556867| 1|
# +--------+----------+---------+