我有一张日期时间列表的cdf。运行以下代码后,其中objDate
是日期时间值列表(格式:%Y-%m-%d),我在x轴上得到带有刻度的cdf,显示值范围内的每隔一年。如何通过指定以下内容获得沿x轴刻度的自定义标签:
1.范围(分年和最大年份)
2.间隔(比如说相隔6个月,所以刻度标签就像01 / 17,17 / 17,11 / 18,07 / 18,......)
import matplotlib.pyplot as plt
import pandas as pd
ser = pd.Series(objDate)
ser.hist(cumulative=True, density=1, bins=500, histtype='step')
plt.show()
答案 0 :(得分:2)
关于第二个问题,您可以使用matplotlib.dates
定位器和格式化程序。那些在hist
。
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
import matplotlib.dates as dates
import numpy as np; np.random.seed(42)
import pandas as pd
objDate = dates.num2date(np.random.normal(735700, 300, 700))
ser = pd.Series(objDate)
ax = ser.hist(cumulative=True, density=1, bins=500, histtype='step', linewidth=2)
ax.xaxis.set_major_locator(dates.MonthLocator([1,7]))
ax.xaxis.set_major_formatter(dates.DateFormatter("%m/%y"))
plt.setp(ax.get_xticklabels(), rotation=60)
plt.show()
对于第一个问题,这并不容易,因为matplotlib总是假设要勾选完整的轴。解决方案是将正在使用的定位器子类化并允许它采用限制性参数。
from datetime import datetime
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
import matplotlib.dates as dates
import numpy as np; np.random.seed(42)
import pandas as pd
objDate = dates.num2date(np.random.normal(735700, 300, 700))
ser = pd.Series(objDate)
ax = ser.hist(cumulative=True, density=1, bins=500, histtype='step', linewidth=2)
class RestrictedLocator(dates.MonthLocator):
def __init__(self, dmin=None, dmax=None, **kw):
self.dmin = dmin
self.dmax = dmax
dates.MonthLocator.__init__(self, **kw)
def __call__(self):
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
self.dmin = self.dmin.replace(tzinfo=dmin.tzinfo)
self.dmax = self.dmax.replace(tzinfo=dmin.tzinfo)
dmin = np.max([dmin, self.dmin])
dmax = np.min([dmax, self.dmax])
return self.tick_values(dmin, dmax)
loc = RestrictedLocator(dmin=datetime(2015,1,1),
dmax = datetime(2017,12,31),
bymonth=[1,7])
ax.xaxis.set_major_locator(loc)
ax.xaxis.set_major_formatter(dates.DateFormatter("%m/%y"))
plt.setp(ax.get_xticklabels(), rotation=60)
plt.show()