我有一个包含ID和初始日期的数据集。我正在尝试创建一个ID的数据集,并且从初始日期到今天为止。
我设法用循环来做到这一点,但它的工作速度很慢。有没有循环的R风格解决方案吗?
这是我的代码:
library('lubridate')
names <- c('Andrey', 'Sergey', 'Voldemar')
starts <- c(dmy(01062018), dmy(29052018), dmy(27052018))
df <- data.frame(names, starts, stringsAsFactors = FALSE)
df$day_number <- as.integer(0)
df$cur_day <- df$starts
所以我们得到了一个初始表,看起来像这样:
names starts day_number cur_day
1 Andrey 2018-06-01 0 2018-06-01
2 Sergey 2018-05-29 0 2018-05-29
3 Voldemar 2018-05-27 0 2018-05-27
现在我添加新日期:
for (row in 1:nrow(df)){
start <- df$starts[row]
lifetime <- interval(start,dmy(03062018))
lifetime_days <- (int_length(lifetime) / 60 / 60 / 24) - 1
if (lifetime_days <1) {next}
df_temp <- data.frame(
names = vector(length=lifetime_days),
starts = vector(length=lifetime_days),
day_number = vector(length=lifetime_days),
cur_day = vector(length=lifetime_days)
)
df_temp$names <- as.character(df_temp$names)
df_temp$starts <- ymd(df_temp$starts)
df_temp$day_number <- as.integer(df_temp$day_number)
df_temp$cur_day <- ymd(df_temp$cur_day)
for (d in 1:lifetime_days){
cur_day <- start + days(d)
df_temp$names[d] <- df$names[row]
df_temp$starts[d] <- start
df_temp$day_number[d] <- d
df_temp$cur_day [d] <- cur_day
}
df <- rbind(df, df_temp)
}
df <- df[order(df$names, df$day_number),]
df
names starts day_number cur_day
1 Andrey 2018-06-01 0 2018-06-01
4 Andrey 2018-06-01 1 2018-06-02
2 Sergey 2018-05-29 0 2018-05-29
5 Sergey 2018-05-29 1 2018-05-30
6 Sergey 2018-05-29 2 2018-05-31
7 Sergey 2018-05-29 3 2018-06-01
8 Sergey 2018-05-29 4 2018-06-02
3 Voldemar 2018-05-27 0 2018-05-27
9 Voldemar 2018-05-27 1 2018-05-28
10 Voldemar 2018-05-27 2 2018-05-29
11 Voldemar 2018-05-27 3 2018-05-30
12 Voldemar 2018-05-27 4 2018-05-31
13 Voldemar 2018-05-27 5 2018-06-01
14 Voldemar 2018-05-27 6 2018-06-02
答案 0 :(得分:2)
library(tidyverse)
library(lubridate)
df%>%
group_by(names)%>%
mutate(lifetime=int_length(interval(starts,dmy(03062018)))/3600/24 - 1,
day_number=list(0:lifetime),
cur_day=list(as.character(seq(starts,starts+lifetime,by="1 day"))))%>%
select(-lifetime)%>%
unnest()%>%
mutate(cur_day=ymd(cur_day))
A tibble: 14 x 4
# Groups: names [3]
names starts day_number cur_day
<chr> <date> <int> <date>
1 Andrey 2018-06-01 0 2018-06-01
2 Andrey 2018-06-01 1 2018-06-02
3 Sergey 2018-05-29 0 2018-05-29
4 Sergey 2018-05-29 1 2018-05-30
5 Sergey 2018-05-29 2 2018-05-31
6 Sergey 2018-05-29 3 2018-06-01
7 Sergey 2018-05-29 4 2018-06-02
8 Voldemar 2018-05-27 0 2018-05-27
9 Voldemar 2018-05-27 1 2018-05-28
10 Voldemar 2018-05-27 2 2018-05-29
11 Voldemar 2018-05-27 3 2018-05-30
12 Voldemar 2018-05-27 4 2018-05-31
13 Voldemar 2018-05-27 5 2018-06-01
14 Voldemar 2018-05-27 6 2018-06-02