我有一个pytorch稀疏张量,我需要使用此切片[idx][:,idx]
切片行/列,其中idx
是索引列表,使用提到的切片在普通浮点张量上产生我想要的结果。是否可以在稀疏张量上应用相同的切片?示例:
#constructing sparse matrix
i = np.array([[0,1,2,2],[0,1,2,1]])
v = np.ones(4)
i = torch.from_numpy(i.astype("int64"))
v = torch.from_numpy(v.astype("float32"))
test1 = torch.sparse.FloatTensor(i, v)
#constructing float tensor
test2 = np.array([[1,0,0],[0,1,0],[0,1,1]])
test2 = autograd.Variable(torch.cuda.FloatTensor(test2), requires_grad=False)
#slicing
idx = [1,2]
print(test2[idx][:,idx])
输出:
Variable containing:
1 0
1 1
[torch.cuda.FloatTensor of size 2x2 (GPU 0)]
我持有250.000 x 250.000邻接矩阵,我需要使用随机idx对n
行和n
列进行切片,只需采样n
随机idx。由于数据集太大,转换为更方便的数据类型是不现实的。
我可以在test1上获得相同的切片结果吗?它甚至可能吗?如果没有,是否有任何解决方法?
现在我正在使用以下“解决方案”来运行我的模型:
idx = sorted(random.sample(range(0, np.shape(test1)[0]), 9000))
test1 = test1AsCsr[idx][:,idx].todense().astype("int32")
test1 = autograd.Variable(torch.cuda.FloatTensor(test1), requires_grad=False)
test1AsCsr是我的test1转换为numpy CSR矩阵的地方。这个解决方案有效,但速度非常慢,并且使我的GPU利用率非常低,因为它需要不断地从CPU内存中读/写。
编辑:结果非稀疏张量很好
答案 0 :(得分:2)
在下面找到答案,使用多种pytorch方法(torch.eq()
,torch.unique()
,torch.sort()
等),以便输出紧凑的切片形状张量{{1} }。
我测试了几个边缘情况(无序(len(idx), len(idx))
,idx
与v
s,0
与多个相同的索引对等等),尽管我可能已经忘记了一些。还应该检查性能。
i
这是一个(可能是次优的,并未覆盖所有边缘情况)解决方案,遵循相关open issue中共享的直觉(希望很快将适当地涵盖此功能):
import torch
import numpy as np
def in1D(x, labels):
"""
Sub-optimal equivalent to numpy.in1D().
Hopefully this feature will be properly covered soon
c.f. https://github.com/pytorch/pytorch/issues/3025
Snippet by Aron Barreira Bordin
Args:
x (Tensor): Tensor to search values in
labels (Tensor/list): 1D array of values to search for
Returns:
Tensor: Boolean tensor y of same shape as x, with y[ind] = True if x[ind] in labels
Example:
>>> in1D(torch.FloatTensor([1, 2, 0, 3]), [2, 3])
FloatTensor([False, True, False, True])
"""
mapping = torch.zeros(x.size()).byte()
for label in labels:
mapping = mapping | x.eq(label)
return mapping
def compact1D(x):
"""
"Compact" values 1D uint tensor, so that all values are in [0, max(unique(x))].
Args:
x (Tensor): uint Tensor
Returns:
Tensor: uint Tensor of same shape as x
Example:
>>> densify1D(torch.ByteTensor([5, 8, 7, 3, 8, 42]))
ByteTensor([1, 3, 2, 0, 3, 4])
"""
x_sorted, x_sorted_ind = torch.sort(x, descending=True)
x_sorted_unique, x_sorted_unique_ind = torch.unique(x_sorted, return_inverse=True)
x[x_sorted_ind] = x_sorted_unique_ind
return x
# Input sparse tensor:
i = torch.from_numpy(np.array([[0,1,4,3,2,1],[0,1,3,1,4,1]]).astype("int64"))
v = torch.from_numpy(np.arange(1, 7).astype("float32"))
test1 = torch.sparse.FloatTensor(i, v)
print(test1.to_dense())
# tensor([[ 1., 0., 0., 0., 0.],
# [ 0., 8., 0., 0., 0.],
# [ 0., 0., 0., 0., 5.],
# [ 0., 4., 0., 0., 0.],
# [ 0., 0., 0., 3., 0.]])
# note: test1[1, 1] = v[i[1,:]] + v[i[6,:]] = 2 + 6 = 8
# since both i[1,:] and i[6,:] are [1,1]
# Input slicing indices:
idx = [4,1,3]
# Getting the elements in `i` which correspond to `idx`:
v_idx = in1D(i, idx).byte()
v_idx = v_idx.sum(dim=0).squeeze() == i.size(0) # or `v_idx.all(dim=1)` for pytorch 0.5+
v_idx = v_idx.nonzero().squeeze()
# Slicing `v` and `i` accordingly:
v_sliced = v[v_idx]
i_sliced = i.index_select(dim=1, index=v_idx)
# Building sparse result tensor:
i_sliced[0] = compact1D(i_sliced[0])
i_sliced[1] = compact1D(i_sliced[1])
# To make sure to have a square dense representation:
size_sliced = torch.Size([len(idx), len(idx)])
res = torch.sparse.FloatTensor(i_sliced, v_sliced, size_sliced)
print(res)
# torch.sparse.FloatTensor of size (3,3) with indices:
# tensor([[ 0, 2, 1, 0],
# [ 0, 1, 0, 0]])
# and values:
# tensor([ 2., 3., 4., 6.])
print(res.to_dense())
# tensor([[ 8., 0., 0.],
# [ 4., 0., 0.],
# [ 0., 3., 0.]])