我有2个数据帧
df1
Company SKU Sales
Walmart A 100
Total A 200
Walmart B 200
Total B 300
Walmart C 400
Walmart D 500
DF2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
Walmart F 400
Total G 500
我想要一个结果数据帧(df2),它只有df1和df2中匹配SKU的记录
DF2
Company SKU Sales
Walmart A 400
Total B 300
Walmart C 900
我只想在df2
中使用df1的唯一(公司+ SKU)值有没有很好的解决方案来实现这个目标?
答案 0 :(得分:2)
<强>更新强>
您可以使用简单的面具:
m = df2.SKU.isin(df1.SKU)
df2 = df2[m]
您正在寻找内部联接。试试这个:
df3 = df1.merge(df2, on=['SKU','Sales'], how='inner')
# SKU Sales
#0 A 100
#1 B 200
#2 C 300
或者这个:
df3 = df1.merge(df2, on='SKU', how='inner')
# SKU Sales_x Sales_y
#0 A 100 100
#1 B 200 200
#2 C 300 300
答案 1 :(得分:2)
解决方案1:
# First identify the common SKU's
temp = list(set(list(df1.SKU)).intersection(set(list(df2.SKU))))
# Filter df2 using the list of common SKU's
df3 = df2[df2.SKU.isin(temp)]
print(df3)
SKU Sales
0 A 400
1 B 300
2 C 900
解决方案2:One Line解决方案
df3 = df2[df2.SKU.isin(list(df1.SKU))]
编辑1:更新问题的解决方案(不是最佳方式,但回答你的问题)
# reading data for df1
df1= pd.read_clipboard(sep='\\s+')
df1
Company SKU Sales
0 Walmart A 100
1 Total A 200
2 Walmart B 200
3 Total B 300
4 Walmart C 400
5 Walmart D 500
# reading data for df2
df2= pd.read_clipboard(sep='\\s+')
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
3 Walmart F 400
4 Total G 500
# Using intersect and zip to create a list of tuples matching in the data frames
temp = list(set(list(zip(df1.Company,df1.SKU))).intersection(set(list(zip(df2.Company,df2.SKU)))))
temp
[('Walmart', 'A'), ('Walmart', 'C'), ('Total', 'B')]
# Creating a helper variable in df2 to lookup in the temp list
df2["temp"] = list(zip(df2.Company,df2.SKU))
df2= df2[df2["temp"].isin(temp)]
del(df2["temp"])
df2
Company SKU Sales
0 Walmart A 400
1 Total B 300
2 Walmart C 900
欢迎建议改进此代码
答案 2 :(得分:1)
一种方法是对齐索引然后使用掩码。
# align indices
df1 = df1.set_index(['Company', 'SKU'])
df2 = df2.set_index(['Company', 'SKU'])
# calculate & apply mask
df2 = df2[df2.index.isin(df1.index)].reset_index()
不需要重置索引,但需要将Company
和SKU
提升为列。