找不到适合createDirectStream的方法

时间:2018-06-01 22:06:20

标签: java apache-spark apache-kafka

有人可以帮我解决这个问题吗?我正在尝试使用java,spark和kafka编译maven项目。但我收到错误no suitable method found for createDirectStream。我可以找到与no suitable method found相关的大量解决方案,但不是我的情况,所以我决定从这里寻求帮助。任何帮助将不胜感激。

以下是更多详细信息中的错误

[ERROR] /home/geek-tech/play-ground/bigdata/iot-traffic-monitor/iot-spark-processor/src/main/java/com/iot/app/spark/processor/IoTDataProcessor.java:[68,86] no suitable method found for createDirectStream(org.apache.spark.streaming.api.java.JavaStreamingContext,java.lang.Class<java.lang.String>,java.lang.Class<com.iot.app.spark.vo.IoTData>,java.lang.Class<kafka.serializer.StringDecoder>,java.lang.Class<com.iot.app.spark.util.IoTDataDecoder>,java.util.Map<java.lang.String,java.lang.String>,java.util.Set<java.lang.String>)
method org.apache.spark.streaming.kafka010.KafkaUtils.<K,V>createDirectStream(org.apache.spark.streaming.api.java.JavaStreamingContext,org.apache.spark.streaming.kafka010.LocationStrategy,org.apache.spark.streaming.kafka010.ConsumerStrategy<K,V>) is not applicable
  (cannot infer type-variable(s) K,V
    (actual and formal argument lists differ in length))
method org.apache.spark.streaming.kafka010.KafkaUtils.<K,V>createDirectStream(org.apache.spark.streaming.StreamingContext,org.apache.spark.streaming.kafka010.LocationStrategy,org.apache.spark.streaming.kafka010.ConsumerStrategy<K,V>) is not applicable
  (cannot infer type-variable(s) K,V
    (actual and formal argument lists differ in length))

这是源代码( IoTDataProcessor

import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

import org.apache.log4j.Logger;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function3;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.State;
import org.apache.spark.streaming.StateSpec;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaMapWithStateDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.KafkaUtils;

import com.google.common.base.Optional;
import com.iot.app.spark.util.IoTDataDecoder;
import com.iot.app.spark.util.PropertyFileReader;
import com.iot.app.spark.vo.IoTData;
import com.iot.app.spark.vo.POIData;

import kafka.serializer.StringDecoder;
import scala.Tuple2;
import scala.Tuple3;

/**
 * This class consumes Kafka IoT messages and creates stream for processing the IoT data.
 */
public class IoTDataProcessor {

     private static final Logger logger = Logger.getLogger(IoTDataProcessor.class);

     public static void main(String[] args) throws Exception {
         //read Spark and Cassandra properties and create SparkConf
         Properties prop = PropertyFileReader.readPropertyFile();       
         SparkConf conf = new SparkConf()
                 .setAppName(prop.getProperty("com.iot.app.spark.app.name"))
                 .setMaster(prop.getProperty("com.iot.app.spark.master"))
                 .set("spark.cassandra.connection.host", prop.getProperty("com.iot.app.cassandra.host"))
                 .set("spark.cassandra.connection.port", prop.getProperty("com.iot.app.cassandra.port"))
                 .set("spark.cassandra.connection.keep_alive_ms", prop.getProperty("com.iot.app.cassandra.keep_alive"));         
         //batch interval of 5 seconds for incoming stream       
         JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));  
         //add check point directory
         jssc.checkpoint(prop.getProperty("com.iot.app.spark.checkpoint.dir"));

         //read and set Kafka properties
         Map<String, String> kafkaParams = new HashMap<String, String>();
         // or Map<String, String> kafkaParams = new HashMap<>();
         kafkaParams.put("zookeeper.connect", prop.getProperty("com.iot.app.kafka.zookeeper"));
         kafkaParams.put("metadata.broker.list", prop.getProperty("com.iot.app.kafka.brokerlist"));
         // kafkaParams.put("auto.offset.reset", "smallest");
         String topic = prop.getProperty("com.iot.app.kafka.topic");
         Set<String> topicsSet = new HashSet<String>();
         topicsSet.add(topic);
         //create direct kafka stream
         JavaPairInputDStream<String, IoTData> directKafkaStream = KafkaUtils.createDirectStream(
                    jssc,
                    String.class,
                    IoTData.class,
                    StringDecoder.class,
                    IoTDataDecoder.class,
                    kafkaParams,
                    topicsSet
                );
         logger.info("Starting Stream Processing");

         //start context
         jssc.start();            
         jssc.awaitTermination();  
  }
}

此外,还有 pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.iot.app.spark</groupId>
    <artifactId>iot-spark-processor</artifactId>
    <version>1.0.0</version>
    <name>IoT Spark Processor</name>

    <dependencies>
        <!-- Spark dependencies -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.10</artifactId>
            <version>2.0.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.10</artifactId>
            <version>2.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.10</artifactId>
            <version>2.0.2</version>
        </dependency>
        <!-- Spark cassandra -->
        <dependency>
            <groupId>com.datastax.spark</groupId>
            <artifactId>spark-cassandra-connector_2.10</artifactId>
            <version>2.0.2</version>
        </dependency>
        <!-- other -->
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
    </dependencies>
    <build>
        <resources>
            <resource>
                <directory>${basedir}/src/main/resources</directory>
            </resource>
        </resources>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>Cp1252</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer
                                    implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                                    <resource>reference.conf</resource>
                                </transformer>
                                <transformer
                                    implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.iot.app.spark.processor.IoTDataProcessor</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

0 个答案:

没有答案