我正在评估我使用Spacy构建的自定义NER模型。我使用Spacy的Scorer课程评估训练集。
def Eval(examples):
# test the saved model
print("Loading from", './model6/')
ner_model = spacy.load('./model6/')
scorer = Scorer()
try:
for input_, annot in examples:
doc_gold_text = ner_model.make_doc(input_)
gold = GoldParse(doc_gold_text, entities=annot['entities'])
pred_value = ner_model(input_)
scorer.score(pred_value, gold)
except Exception as e: print(e)
print(scorer.scores)
它工作正常,但我不理解输出。这是我为每个训练集获得的内容。
{'uas': 0.0, 'las': 0.0, 'ents_p': 90.14084507042254, 'ents_r': 92.7536231884058, 'ents_f': 91.42857142857143, 'tags_acc': 0.0, 'token_acc': 100.0}
{'uas': 0.0, 'las': 0.0, 'ents_p': 91.12227805695142, 'ents_r': 93.47079037800687, 'ents_f': 92.28159457167091, 'tags_acc': 0.0, 'token_acc': 100.0}
{'uas': 0.0, 'las': 0.0, 'ents_p': 92.45614035087719, 'ents_r': 92.9453262786596, 'ents_f': 92.70008795074759, 'tags_acc': 0.0, 'token_acc': 100.0}
{'uas': 0.0, 'las': 0.0, 'ents_p': 94.5993031358885, 'ents_r': 94.93006993006993, 'ents_f': 94.76439790575917, 'tags_acc': 0.0, 'token_acc': 100.0}
{'uas': 0.0, 'las': 0.0, 'ents_p': 92.07920792079209, 'ents_r': 93.15525876460768, 'ents_f': 92.61410788381743, 'tags_acc': 0.0, 'token_acc': 100.0}
有谁知道钥匙是什么?我查看过Spacy的文档但找不到任何内容。
谢谢!
答案 0 :(得分:7)
ents_p
,ents_r
,ents_f
是NER任务的精确度,召回率和fscore。tags_acc
是POS标记的准确性。token_acc
似乎是令牌细分的精确度。