通过groupby循环,为pandas

时间:2018-05-31 15:55:09

标签: python pandas pandas-groupby

我有一个示例数据集:

import pandas as pd
d = {
  'ID': ['ID-1','ID-1','ID-1','ID-1','ID-2','ID-2','ID-2'],
  'OBR':[100,100,100,100,200,200,200],
  'OBX':['A','B','C','D','A','B','C'],
  'notes':['hello','hello2','','','bye','',''],
}
df = pd.DataFrame(d)

看起来像:

    ID   OBR  OBX   notes
   ID-1  100   A    hello
   ID-1  100   B    hello2
   ID-1  100   C        
   ID-1  100   D        
   ID-2  200   A    bye
   ID-2  200   B        
   ID-2  200   C        

我想循环遍历每一行,并为每个ID,OBR组合,为OBX分配一个数字,并注释增加1的注释名称并相应地分配值。

因此对于第一个ID,OBR组合:ID和OBR名称保持不变,因为有4个不同的OBX值,OBX的名称将是OBX1,OBX2,OBX3和OBX4 ,由于有2个不同的音符值,因此音符的名称为note1和note2。

第二个ID,OBR组合:ID和OBR名称保持不变,因为有3个不同的OBX值,OBX的名称将是OBX1,OBX2和OBX3,并且从那里开始是1个音符值,音符的名称是note1。

欲望输出:打印并分配值

ID = ID-1
OBR= 100
OBX1=A
OBX2=B
OBX3=C
OBX4=D
note1 = hello
note2 = hello2

ID = ID-2
OBR= 200
OBX1 = A
OBX2 = B
OBX3 = C
note1 = bye

我的尝试:

count = 0
grouped = df.groupby(['ID','OBR'])
for a, group in grouped:
    ID = a[0]
    OBR = a[1]
    OBX+str(count) = group['OBX']  #this gives an error, can't use OBX+str(count) as the name
    note+str(count) = group['notes'] #this gives an error as well
    count +=1 #Is using count correct? 
    print(....)

1 个答案:

答案 0 :(得分:1)

一种方法是groupby到元组:

res = df.groupby(['ID', 'OBR'])\
        .agg({'OBX': lambda x: tuple(x), 'notes': lambda x: tuple(filter(None, x))})\
        .reset_index()

print(res)

     ID  OBR           OBX            notes
0  ID-1  100  (A, B, C, D)  (hello, hello2)
1  ID-2  200     (A, B, C)           (bye,)

然后使用适用的enumerate迭代行:

for row in res.itertuples():
    print('\nID =', row.ID)
    print('OBR =', row.OBR)
    for i, obx in enumerate(row.OBX, 1):
        print('OBX'+str(i)+' =', obx)
    for i, note in enumerate(row.notes, 1):
        print('notes'+str(i)+' =', note)

结果:

ID = ID-1
OBR = 100
OBX1 = A
OBX2 = B
OBX3 = C
OBX4 = D
notes1 = hello
notes2 = hello2

ID = ID-2
OBR = 200
OBX1 = A
OBX2 = B
OBX3 = C
notes1 = bye