在keras的this example的基础上,我构建了一个自动编码器并在MNIST数据集上训练它,但是根据如何我重建输入,输出是不同。
第1行=原始MNIST test_data
第2行= decoder(encoder(test_data))
第3行= full_vae_model(test_data)
如果仔细观察,您会发现第2行和第3行中的数字看起来不同。有人可以解释为什么会这样吗?根据我的理解,我不应该通过两条路径中的哪一条重建原始数据。
这里是变分自动编码器的结构(图像来自this article)。现在,当我接受输入并将其传递到整个网络时,为什么它不像将它传递给潜在的向量那样,然后这个中间结果又一次到达输出?两者之间会发生什么?
以下是代码,稍加修改keras example(但架构中没有更改)
'''Example of VAE on MNIST dataset using MLP
The VAE has a modular design. The encoder, decoder and VAE
are 3 models that share weights. After training the VAE model,
the encoder can be used to generate latent vectors.
The decoder can be used to generate MNIST digits by sampling the
latent vector from a Gaussian distribution with mean=0 and std=1.
# Reference
[1] Kingma, Diederik P., and Max Welling.
"Auto-encoding variational bayes."
https://arxiv.org/abs/1312.6114
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from keras.layers import Lambda, Input, Dense
from keras.models import Model
from keras.datasets import mnist
from keras.losses import mse, binary_crossentropy
from keras.utils import plot_model
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
import os
# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
"""Reparameterization trick by sampling fr an isotropic unit Gaussian.
# Arguments:
args (tensor): mean and log of variance of Q(z|X)
# Returns:
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 32
epochs = 50
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
#plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
#plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')
if __name__ == '__main__':
models = (encoder, decoder)
data = (x_test, y_test)
# VAE loss = mse_loss or xent_loss + kl_loss
#reconstruction_loss = mse(inputs, outputs)
reconstruction_loss = binary_crossentropy(inputs, outputs)
reconstruction_loss *= original_dim
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='adam')
vae.summary()
# train the autoencoder
vae.fit(x_train,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
#vae.save_weights('vae_mlp_mnist.h5')
z_mean, z_log_var, z = encoder.predict(x_test)
decoded_imgs = decoder.predict(z_mean)
Y_img = vae.predict(x_test)
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
# display original
ax = plt.subplot(3, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(3, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction 2
ax = plt.subplot(3, n, i + 1 + 2 * n)
plt.imshow(Y_img[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
答案 0 :(得分:1)
我认为,即使您在相同的decoder(encoder(test_data))
上运行test_data
两次,也应该得到不同的输出,这是正确的行为。
如果您可以参考“可变自动编码器教程”,请参见图4(右),该图关于“实现为前馈神经网络的训练时可变自动编码器”。它是从正态分布中采样epsilon的,因此epsilon是一个随机变量,每当您在代码中调用该函数时,其实现都是不同的。