这是我的代码,但输出非常糟糕。
并且我的意思是这些值远远超出它们的预期,测试误差非常高。如果我对值进行去标准化并比较差异,那就太大了。
我有两个问题:
1)任何人都可以告诉我为什么会这样,以及我能做些什么来使它表现更好? 2)当值经过如此多的函数时,如何将输出恢复为原始格式。
我是新手,并立即跳进了一个复杂的主题,所以我知道我的代码不是最好的,如果你能告诉我如何改进那也会很棒!无论如何,请耐心等待!
我使用的数据是两个的倍数列表。
ps:当我使用像dynamic_rnn()这样的张量流模型时,我得到的输出是准确的,而且我只需要对输出进行非规范化以获得原始格式的数字(正确的大小),如何将其非规范化得到输出,我不明白! 谢谢!
# LSTM [ Many to One ]
# START
# imports
import csv
import numpy as np
import tensorflow as tf
import sys
import os
import json
from random import shuffle
from tensorflow.python import debug as tf_debug
# CALCULATE ALL POSSIBLE BATCH SIZES
def calculate_batch_sizes(n_train):
batch_sizes = []
for i in range(2, int(n_train/2)):
if n_train % i == 0 and n_train / i > 1:
batch_sizes.append(i)
return batch_sizes
def de_normalize(value, m1, m2):
return (value*(m1-m2)) + m2
class lstm_network():
name = "lstm_"
# initialization function
def __init__(self, config_params):
self.sequence_length = config_params["sequence_length"]
self.batch_size = config_params["batch_size"]
self.hidden_layers_size = config_params["hidden_layers_size"]
self.data_path = config_params["data_path"]
self.n_epochs = config_params["no_of_epochs"]
self.learning_rate = config_params["learning_rate"]
self.w_igate, self.w_fgate, self.w_ogate, self.w_cgate = tf.get_variable('w_igate', shape = [self.sequence_length, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('w_fgate', shape = [self.sequence_length, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('w_ogate', shape = [self.sequence_length, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('w_cgate', shape = [self.sequence_length, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer())
self.u_igate, self.u_fgate, self.u_ogate, self.u_cgate = tf.get_variable('u_igate', shape = [self.hidden_layers_size, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('u_fgate', shape = [self.hidden_layers_size, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('u_ogate', shape = [self.hidden_layers_size, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer()), tf.get_variable('u_cgate', shape = [self.hidden_layers_size, self.hidden_layers_size], initializer = tf.contrib.layers.xavier_initializer())
self.outputs = [0.0] * self.batch_size
self.testing_loss = float(0)
self.training_loss = float(0)
self.ft, self.ct, self._ct, self.it = [0.0]*(self.hidden_layers_size), [0.0]*(self.hidden_layers_size), [0.0]*(self.hidden_layers_size), [0.0]*(self.hidden_layers_size)
self.ot, self.ht, self.ct_prev, self.ht_prev = [0.0]*(self.hidden_layers_size), [0.0]*(self.hidden_layers_size), np.array([0.0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size), np.array([0.0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size)
self.w_output_layer = tf.get_variable('w_output_layer', shape = [self.hidden_layers_size, 1], initializer = tf.contrib.layers.xavier_initializer())
print("\n Object of class lstm_network initialized with the given configuration")
# print values function
def print_model_info(self):
print("\n\n\n\t\t MODEL INFORMATION\n\n")
print("\n Weights of the LSTM layer: ")
print("\n\n input Gate Weights: \n w: ", self.w_igate,"\n u: ", self.u_igate)
print("\n\n Forget Gate Weights: \n w: ", self.w_fgate,"\n u: ", self.u_fgate)
print("\n\n Context Gate Weights: \n w: ", self.w_cgate,"\n u: ", self.u_cgate)
print("\n\n Output Gate Weights: \n w: ", self.w_ogate,"\n u: ", self.u_ogate)
print("\n\n Average loss while training: ", self.training_loss)
print("\n\n Average loss while testing: ", self.testing_loss)
# loading function
def load_data(self):
with open(self.data_path, 'r') as data_file:
data_reader = csv.reader(data_file, delimiter = ',')
self.data = [float(row[1]) for row in data_reader]
self.data_max, self.data_min, self.n_data = float(max(self.data)), float(min(self.data)), len(self.data)
for i in range(len(self.data)):
self.data[i] = float( (self.data[i]-self.data_min)/(self.data_max-self.data_min) )
self.data_x = [ self.data[i:i+self.sequence_length] for i in range(self.n_data - self.sequence_length-1)]
self.data_y = [ self.data[i] for i in range(self.sequence_length+1, self.n_data)]
self.n_data = len(self.data_x)
temp = list(zip(self.data_x,self.data_y))
shuffle(temp)
test_size = 0.25
self.data_x, self.data_y = zip(*temp)
self.trainx, self.trainy, self.testx, self.testy = self.data_x[:-int(test_size*self.n_data)], self.data_y[:-int(test_size*self.n_data)], self.data_x[-int(test_size*self.n_data):], self.data_y[-int(test_size*self.n_data):]
self.n_train, self.n_test = len(self.trainx), len(self.testx)
batch_sizes = []
batch_sizes.extend(calculate_batch_sizes(self.n_train))
while self.batch_size not in batch_sizes:
print("\n batch size provided in the initial configuration cannot be used, please select one from the following batch sizes:\n",batch_sizes)
self.batch_size = int(input("\n enter a batch size: "))
self.n_train_batches = int( self.n_train/self.batch_size )
self.trainx, self.trainy, self.testx, self.testy = np.float32(self.trainx), np.float32(self.trainy), np.float32(self.testx), np.float32(self.testy)
self.trainx_batches, self.trainy_batches = self.trainx.reshape(self.n_train_batches, self.batch_size, self.sequence_length), self.trainy.reshape(self.n_train_batches,self.batch_size, 1)
print("\n data loaded succesfully")
# graph building and training function
def build_graph_train(self):
outputs = [0.0]*self.batch_size#tf.placeholder(tf.float32, shape = [1, self.batch_size])
x = self.trainx_batches
ht_prev = tf.reshape(np.float32([0]*(self.hidden_layers_size)), [1, self.hidden_layers_size]) #[tf.placeholder(tf.float32, shape = [1, self.hidden_layers_size], name = 'ht_prev')
ct_prev = tf.reshape(np.float32([0]*(self.hidden_layers_size)), [1, self.hidden_layers_size]) #tf.placeholder(tf.float32, shape = [1, self.hidden_layers_size], name = 'ct_prev')
self.ht_prev = np.array([0.0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size)
self.ct_prev = np.array([0.0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size)
for i1 in range(self.n_train_batches):
for i2 in range(self.batch_size):
#self.ht_prev = [self.ht_prev[i:i+9] for i in range(0, self.hidden_layers_size, 9)]
self.ft = tf.sigmoid( tf.matmul(tf.reshape(x[i1][i2], [1, self.sequence_length]), self.w_fgate) + tf.matmul(ht_prev, self.u_fgate) )
self.it = tf.sigmoid( tf.matmul(tf.reshape(x[i1][i2], [1, self.sequence_length]), self.w_igate) + tf.matmul(ht_prev, self.u_igate) )
self.ot = tf.sigmoid( tf.matmul(tf.reshape(x[i1][i2], [1, self.sequence_length]), self.w_ogate) + tf.matmul(ht_prev, self.u_ogate) )
self._ct = tf.sigmoid( tf.matmul(tf.reshape(x[i1][i2], [1, self.sequence_length]), self.w_cgate) + tf.matmul(ht_prev, self.u_cgate) )
self.ct = tf.tanh(tf.multiply(self.ft, ct_prev) + tf.multiply(self.it, self._ct))
self.ht = tf.multiply(self.ot, self.ct)
ht_prev = self.ht
ct_prev = self.ct
outputs[i2] = tf.nn.relu( tf.matmul(self.ht, self.w_output_layer) )
loss = tf.reduce_mean(tf.square(tf.subtract(outputs, self.trainy_batches[i1])))
self.ht_prev = ht_prev
self.ct_prev = ct_prev
self.train_op = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(loss)
print("\n Graph built \n\n Now training begins...\n")
#training
i = 0
avg_loss = float(0)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
for ep in range(self.n_epochs + 1):
#ht_prev = np.float32([0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size)
#ct_prev = np.float32([0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size)
#loss.eval( feed_dict= { x: np.float32(self.trainx_batches).reshape(self.n_train_batches, self.batch_size, self.sequence_length) })
sess.run(self.train_op)#, feed_dict= { x: np.float32(self.trainx_batches).reshape(self.n_train_batches, self.batch_size, self.sequence_length) } )#, ht_prev: np.float32([0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size), ct_prev: np.float32([0.0]*(self.hidden_layers_size)).reshape(1, self.hidden_layers_size) })
if ep % 10 == 0:
i += 1
mse = loss.eval()# feed_dict= { x: np.float32(self.trainx_batches).reshape(self.n_train_batches, self.batch_size, self.sequence_length) })
avg_loss = float(avg_loss + mse)
print("\n Epoch: ", ep, "\t Loss: ", mse)
avg_loss = float(avg_loss/i)
self.training_loss = avg_loss
print("\n Training Loss: ", avg_loss)
# Predict function
def predict(self):
print("\n testing begins...")
x_test_row = tf.placeholder(tf.float32, shape = [1, self.sequence_length])
avg_error = float(0)
input_row = []
output_row = 0.0
predictions = []
#ht_prev = tf.placeholder(tf.float32, shape = [1, self.hidden_layers_size]) # ht_prev = tf.varaible(self.ht_prev)
#ct_prev = tf.placeholder(tf.float32, shape = [1, self.hidden_layers_size]) # ct_prev = tf.varaible(self.ct_prev)
# one forward pass
self.ft = tf.sigmoid( tf.matmul(x_test_row, self.w_fgate) + tf.matmul(self.ht_prev, self.u_fgate) )
self.it = tf.sigmoid( tf.matmul(x_test_row, self.w_igate) + tf.matmul(self.ht_prev, self.u_igate ) )
self.ot = tf.sigmoid( tf.matmul(x_test_row, self.w_ogate) + tf.matmul(self.ht_prev, self.u_ogate) )
self._ct = tf.sigmoid( tf.matmul(x_test_row, self.w_cgate) + tf.matmul(self.ht_prev, self.u_cgate) )
self.ct = tf.tanh(tf.multiply(self.ft, self.ct_prev) + tf.multiply(self.it, self._ct))
self.ht = tf.multiply(self.ot,self.ct)
pred_output = tf.nn.relu( tf.matmul(self.ht, self.w_output_layer) )
with tf.Session() as sess:
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
print("\n loaded the variables")
for i1 in range(self.n_test):
del input_row[:]
output_row = float(self.testy[i1])
for i2 in range(self.sequence_length):
input_row.append(self.testx[i1][i2])
#sess.run(pred_output, feed_dict = { x_test_row: np.array(input_row).reshape(1, self.sequence_length), ht_prev:self.ht_prev, ct_prev: self.ct_prev })
predictions.append([pred_output.eval(feed_dict = { x_test_row: np.float32(input_row).reshape(1, self.sequence_length) }), output_row])
avg_error += abs(predictions[i1][0] - output_row)
avg_error = float(avg_error/i1)
self.testing_loss = avg_error
print("\n testing Error: ", avg_error)
return np.array(predictions)
# save model function
def save_model(self):
print("\n\n model's information saved in model_info.txt and weights stored in model.json\n\n")
f = open("model.json", "w+")
model_dict = { 'w_output_layer': self.w_output_layer, 'w_igate': self.w_igate, 'u_igate': self.u_igate, 'w_fgate': self.w_fgate, 'u_fgate': self.u_fgate, 'w_cgate': self.w_cgate, 'u_cgate': self.u_cgate, 'w_ogate': self.w_ogate, 'u_ogate': self.u_ogate }
f.write(str(model_dict))
f.close()
# main function()
def main():
# parameters of the network
config_params = dict()
config_params["sequence_length"] = 3
config_params["batch_size"] = 33
config_params["hidden_layers_size"] = 9
config_params["data_path"] = "data.csv"
config_params["no_of_epochs"] = 2000
config_params["learning_rate"] = 0.01
# object of class lstm_network
test_object = lstm_network(config_params)
test_object.load_data()
test_object.build_graph_train()
predictions = test_object.predict()
print("\n predictions are: \n", predictions)
test_object.save_model()
# run
main()
用于此配置:
我得到的平均测试错误是:0.15911798179149628
我得到的平均训练错误是:0.10901389649110053
由于规范化值
,它们看起来很低