更改现有数据框架的架构

时间:2018-05-31 13:10:39

标签: scala apache-spark dataframe

我想更改现有数据帧的架构,同时更改架构我遇到错误。我可以更改数据帧的现有架构。

val customSchema=StructType(
      Array(
        StructField("data_typ", StringType, nullable=false),
        StructField("data_typ", IntegerType, nullable=false),
        StructField("proc_date", IntegerType, nullable=false),
        StructField("cyc_dt", DateType, nullable=false),
        ));

val readDF=
+------------+--------------------+-----------+--------------------+
|DatatypeCode|         Description|monthColNam|     timeStampColNam|
+------------+--------------------+-----------+--------------------+
|       03099|Volumetric/Expand...|     201867|2018-05-31 18:25:...|
|       03307|  Elapsed Day Factor|     201867|2018-05-31 18:25:...|
+------------+--------------------+-----------+--------------------+

val rows= readDF.rdd
val readDF1 = sparkSession.createDataFrame(rows,customSchema)

预期结果

val newdf=
    +------------+--------------------+-----------+--------------------+
    |data_typ_cd |       data_typ_desc|proc_dt    |     cyc_dt         |
    +------------+--------------------+-----------+--------------------+
    |       03099|Volumetric/Expand...|     201867|2018-05-31 18:25:...|
    |       03307|  Elapsed Day Factor|     201867|2018-05-31 18:25:...|
    +------------+--------------------+-----------+--------------------+

任何帮助都会被评估

2 个答案:

答案 0 :(得分:4)

您不能像这样更改架构。传递给createDataFrame的模式对象必须匹配数据,而不是相反:

答案 1 :(得分:1)

您可以执行以下操作,将数据类型从一个更改为另一个。

我创建了一个类似于你的数据框,如下所示:

import sparkSession.sqlContext.implicits._
import org.apache.spark.sql.types._

var df = Seq(("03099","Volumetric/Expand...", "201867", "2018-05-31 18:25:00"),("03307","Elapsed Day Factor", "201867", "2018-05-31 18:25:00"))
  .toDF("DatatypeCode","data_typ", "proc_date", "cyc_dt")

df.printSchema()
df.show()

这给了我以下输出:

root
 |-- DatatypeCode: string (nullable = true)
 |-- data_typ: string (nullable = true)
 |-- proc_date: string (nullable = true)
 |-- cyc_dt: string (nullable = true)

+------------+--------------------+---------+-------------------+
|DatatypeCode|            data_typ|proc_date|             cyc_dt|
+------------+--------------------+---------+-------------------+
|       03099|Volumetric/Expand...|   201867|2018-05-31 18:25:00|
|       03307|  Elapsed Day Factor|   201867|2018-05-31 18:25:00|
+------------+--------------------+---------+-------------------+

如果您看到上面的架构,则所有列都是String类型。现在,我想将列proc_date更改为Integer类型,将cyc_dt更改为Date类型,我将执行以下操作:

df = df.withColumnRenamed("DatatypeCode", "data_type_code")

df = df.withColumn("proc_date_new", df("proc_date").cast(IntegerType)).drop("proc_date")

df = df.withColumn("cyc_dt_new", df("cyc_dt").cast(DateType)).drop("cyc_dt")

当您检查此数据帧的架构时

df.printSchema()

然后使用新列名称输出如下:

root
 |-- data_type_code: string (nullable = true)
 |-- data_typ: string (nullable = true)
 |-- proc_date_new: integer (nullable = true)
 |-- cyc_dt_new: date (nullable = true)