我有一个数据集(Product_ID,date_time,Sold),其中包含在不同日期销售的产品。这些日期为9个月,每月随机13天或更长时间。我必须以这样的方式隔离数据:每个产品每天销售多少产品1-3天,每天4-7天销售,每天8-15天销售,每天销售> 16天。那么如何使用pandas和其他包
在python中对此进行编码PRODUCT_ID DATE_LOCATION Sold
0E4234 01-08-16 0:00 2
0E4234 02-08-16 0:00 7
0E4234 07-08-16 0:00 3
0E4234 08-08-16 0:00 1
0E4234 09-08-16 0:00 2
0E4234 10-08-16 0.00 1
.
.
.
0G2342 22-08-16 0:00 1
0G2342 23-08-16 0:00 2
0G2342 26-08-16 0:00 1
0G2342 28-08-16 0:00 1
0G2342 29-08-16 0:00 3
0G2342 30-08-16 0:00 3
.
.
.(goes for 64 products each with 9 months of data)
.
我甚至不知道如何在python中编写代码 所需的输出是
PRODUCT_ID Days Sold
0E4234 1-3 9 #(1,2) dates because range is 1 to 3
4-7 7 #(7,8,9,10) dates because range is 4 to 7
8-15 0
>16 0
0G2342 1-3 11 #(22,23),(26),(28,29,30) dates because range is 1 to 3
4-7 0
8-15 0
>16 0
.
.(for 64 products)
.
如果至少有人发布了从哪里开始的链接,那将会很高兴。 我试过了
df["DATE_LOCATION"] = pd.to_datetime(df.DATE_LOCATION)
df["DAY"] = df.DATE_LOCATION.dt.day
def flag(x):
if 1<=x<=3:
return '1-3'
elif 4<=x<=7:
return '4-7'
elif 8<=x<=15:
return '8-15'
else:
return '>=16'
df["Days"] = df.DAY.apply(flag)
df.groupby(["PRODUCT_ID","Days"]).Sold.sum()
这给了我每个月这几天之间销售的产品数量。但是我需要指定范围内的产品总和是产品以指定的条件出售。
答案 0 :(得分:2)
Series
使用DataFrame
与原始cut
相同的尺寸,与sum
合并并汇总df['DATE_LOCATION'] = pd.to_datetime(df['DATE_LOCATION'], format='%d-%m-%y %H:%M')
df = df.sort_values("DATE_LOCATION")
s = (df["DATE_LOCATION"].diff().dt.days > 1).cumsum()
count = s.groupby(s).transform('size')
print (count)
0 2
1 2
2 4
3 4
4 4
5 4
6 2
7 2
8 1
9 3
10 3
11 3
Name: DATE_LOCATION, dtype: int32
bins = pd.cut(count, bins=[0,3,7,15,31], labels=['1-3', '4-7','8-15', '>=16'])
df = df.groupby(['PRODUCT_ID', bins])['Sold'].sum().reset_index()
print (df)
PRODUCT_ID DATE_LOCATION Sold
0 0E4234 1-3 9
1 0E4234 4-7 7
2 0G2342 1-3 11
:
$openingTime = date_create_from_format('H : i A', $your_variable);
$closingTime = date_create_from_format('H : i A', $your_variable);