使用NaN

时间:2018-05-30 19:25:11

标签: python pandas scipy nan missing-data

我想在熊猫数据框中赢得几列数据。每列都有一些NaN,这会影响winsorization,因此需要删除它们。我知道如何执行此操作的唯一方法是删除所有数据,而不是逐列删除它们。

MWE:

import numpy as np
import pandas as pd
from scipy.stats.mstats import winsorize

# Create Dataframe
N, M, P = 10**5, 4, 10**2
dates = pd.date_range('2001-01-01', periods=N//P, freq='D').repeat(P)
df = pd.DataFrame(np.random.random((N, M))
                  , index=dates)
df.index.names = ['DATE']
df.columns = ['one','two','three','four']
# Now scale them differently so you can see the winsorization
df['four'] = df['four']*(10**5)
df['three'] = df['three']*(10**2)
df['two'] = df['two']*(10**-1)
df['one'] = df['one']*(10**-4)
# Create NaN
df.loc[df.index.get_level_values(0).year == 2002,'three'] = np.nan
df.loc[df.index.get_level_values(0).month == 2,'two'] = np.nan
df.loc[df.index.get_level_values(0).month == 1,'one'] = np.nan

以下是基线分布:

df.quantile([0, 0.01, 0.5, 0.99, 1])

输出:

               one           two      three          four
0.00  2.336618e-10  2.294259e-07   0.002437      2.305353
0.01  9.862626e-07  9.742568e-04   0.975807   1003.814520
0.50  4.975859e-05  4.981049e-02  50.290946  50374.548980
0.99  9.897463e-05  9.898590e-02  98.978263  98991.438985
1.00  9.999983e-05  9.999966e-02  99.996793  99999.437779

这就是我获胜的方式:

def using_mstats(s):
    return winsorize(s, limits=[0.01, 0.01])

wins = df.apply(using_mstats, axis=0)
wins.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])

这给出了这个:

Out[356]:
           one       two      three          four
0.00  0.000001  0.001060   1.536882   1003.820149
0.01  0.000001  0.001060   1.536882   1003.820149
0.25  0.000025  0.024975  25.200378  25099.994780
0.50  0.000050  0.049810  50.290946  50374.548980
0.75  0.000075  0.074842  74.794537  75217.343920
0.99  0.000099  0.098986  98.978263  98991.436957
1.00  0.000100  0.100000  99.996793  98991.436957

four是正确的,因为它没有NaN但其他列不正确。第99百分位和Max应该是相同的。观察计数对于两者都是相同的:

In [357]: df.count()
Out[357]:
one       90700
two       91600
three     63500
four     100000
dtype: int64

In [358]: wins.count()
Out[358]:
one       90700
two       91600
three     63500
four     100000
dtype: int64

这就是我能解决的问题。它,但以丢失我的大量数据为代价:

wins2 = df.loc[df.notnull().all(axis=1)].apply(using_mstats, axis=0)
wins2.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])

输出:

Out[360]:
               one       two      three          four
0.00  9.686203e-07  0.000928   0.965702   1005.209503
0.01  9.686203e-07  0.000928   0.965702   1005.209503
0.25  2.486052e-05  0.024829  25.204032  25210.837443
0.50  4.980946e-05  0.049894  50.299004  50622.227179
0.75  7.492750e-05  0.075059  74.837900  75299.906415
0.99  9.895563e-05  0.099014  98.972310  99014.311761
1.00  9.895563e-05  0.099014  98.972310  99014.311761

In [361]: wins2.count()
Out[361]:
one      51700
two      51700
three    51700
four     51700
dtype: int64

如何在保持数据形状(即不删除行)的同时,按列列出非NaN数据?

1 个答案:

答案 0 :(得分:3)

正如经常发生的那样,简单地创建MWE有助于澄清。我需要将clip()与quantile()结合使用,如下所示:

df2 = df.clip(lower=df.quantile(0.01), upper=df.quantile(0.99), axis=1)
df2.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])

输出:

               one       two      three          four
0.00  9.862626e-07  0.000974   0.975807   1003.814520
0.01  9.862666e-07  0.000974   0.975816   1003.820092
0.25  2.485043e-05  0.024975  25.200378  25099.994780
0.50  4.975859e-05  0.049810  50.290946  50374.548980
0.75  7.486737e-05  0.074842  74.794537  75217.343920
0.99  9.897462e-05  0.098986  98.978245  98991.436977
1.00  9.897463e-05  0.098986  98.978263  98991.438985

In [384]: df2.count()
Out[384]:
one       90700
two       91600
three     63500
four     100000
dtype: int64

这些数字与上述不同,因为我保留了每列中没有丢失的所有数据(NaN)。