我有一个可以在本地执行而没有任何错误的管道。我以前在本地运行的管道中出现了这个错误
'Clients have non-trivial state that is local and unpickleable.'
PicklingError: Pickling client objects is explicitly not supported.
我相信我通过降级到apache-beam = 2.3.0来解决这个问题 然后在本地它将完美运行。
现在我正在使用 DataflowRunner ,在requirements.txt文件中,我有以下依赖项
apache-beam==2.3.0
google-cloud-bigquery==1.1.0
google-cloud-core==0.28.1
google-cloud-datastore==1.6.0
google-cloud-storage==1.10.0
protobuf==3.5.2.post1
pytz==2013.7
但我再次遇到这个可怕的错误
'Clients have non-trivial state that is local and unpickleable.'
PicklingError: Pickling client objects is explicitly not supported.
它是如何通过DataflowRunner而不是DirectRunner向我提供错误的?他们不应该使用相同的依赖/环境吗? 任何帮助,将不胜感激。
我已经读过这是解决问题的方法,但是当我尝试它时,我仍然会得到同样的错误
class MyDoFn(beam.DoFn):
def start_bundle(self, process_context):
self._dsclient = datastore.Client()
def process(self, context, *args, **kwargs):
# do stuff with self._dsclient
来自https://github.com/GoogleCloudPlatform/google-cloud-python/issues/3191
我之前的参考文章,我在本地修复了这个:
Using start_bundle() in apache-beam job not working. Unpickleable storage.Client()
提前致谢!
答案 0 :(得分:2)
使用start_bundle
方法初始化无法挑剔的客户端是正确的方法,Beam IO经常遵循这种方法,请参见datastoreio.py作为示例。这是使用DoFn中的GCS python客户端执行简单操作的管道。我在Apache Beam 2.16.0上运行了它,没有任何问题。如果您仍然可以重现问题,请提供其他详细信息。
gcs_client.py文件:
import argparse
import logging
import time
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from google.cloud import storage
class MyDoFn(beam.DoFn):
def start_bundle(self):
self.storage_client = storage.Client()
def process(self, element):
bucket = self.storage_client.get_bucket("existing-gcs-bucket")
blob = bucket.blob(str(int(time.time())))
blob.upload_from_string("payload")
return element
logging.getLogger().setLevel(logging.INFO)
_, options = argparse.ArgumentParser().parse_known_args()
pipeline_options = PipelineOptions(options)
p = beam.Pipeline(options=pipeline_options)
_ = p | beam.Create([None]) | beam.ParDo(MyDoFn())
p.run().wait_until_finish()
requirements.txt文件:
google-cloud-storage==1.23.0
命令行:
python -m gcs_client \
--project=insert_your_project \
--runner=DataflowRunner \
--temp_location gs://existing-gcs-bucket/temp/ \
--requirements_file=requirements.txt \
--save_main_session
答案 1 :(得分:0)
在使Dataflow向Bigtable写一堆行时遇到了类似的问题。将--save-main-session
设置为False
似乎已经解决了。