我试图将以下R代码翻译成Python并因为行索引而陷入困境......
df$col3[index+1] <− df$col2[index] # what he want :col2 in certain index assign its value to col3 by index increment 1.
Fictitiuous示例
df = pd.DataFrame({'id' : [1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5],
'id_old' : [1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 5],
'col1' : np.random.normal(size = 12),
'col2' : np.random.randint(low = 20, high = 50, size = 12),
'col3' : np.repeat(20, 12)})
print(df)
myindex = np.where(df.id != df.id_old) # tuple
print(myindex)
print(np.add(myindex, 1))
replacement_values = df.iloc[myindex][['col2']]
输出
id id_old col1 col2 col3
0 1 1 0.308380 23 20
1 1 1 1.185646 35 20
2 1 2 -0.432066 27 20
3 2 2 0.115055 32 20
4 2 3 0.683291 34 20
5 3 4 -1.916321 42 20
6 4 4 0.888327 34 20
7 4 4 1.312879 29 20
8 4 4 1.260612 27 20
9 4 5 0.062635 22 20
10 5 5 0.081149 23 20
11 5 5 -1.872873 32 20
(array([2, 4, 5, 9]),)
[[ 3 5 6 10]]
这就是我的尝试:
df.loc[np.add(myindex, 1), 'col3'] = replacement_values
df.loc[df.index.isin(np.add(myindex + 1)), 'col3'] = replacement_values
期望的结果:
id id_old col1 col2 col3
0 1 1 0.308380 23 20
1 1 1 1.185646 35 20
2 1 2 -0.432066 27 20
3 2 2 0.115055 32 27
4 2 3 0.683291 34 20
5 3 4 -1.916321 42 34
6 4 4 0.888327 34 42
7 4 4 1.312879 29 20
8 4 4 1.260612 27 20
9 4 5 0.062635 22 20
10 5 5 0.081149 23 22
11 5 5 -1.872873 32 20
我想我忽略了一些基本的东西,或者我完全走错了路?
非常感谢你的帮助!
答案 0 :(得分:2)
修改代码,在values
中添加data.frame
R
对索引不敏感,但在pandas
中,索引确实
df=pd.read_clipboard()
df.loc[np.add(myindex, 1)[0],'col3']=df.iloc[myindex]['col2'].values
df
Out[399]:
id id_old col1 col2 col3
0 1 1 0.308380 23 20
1 1 1 1.185646 35 20
2 1 2 -0.432066 27 20
3 2 2 0.115055 32 27
4 2 3 0.683291 34 20
5 3 4 -1.916321 42 34
6 4 4 0.888327 34 42
7 4 4 1.312879 29 20
8 4 4 1.260612 27 20
9 4 5 0.062635 22 20
10 5 5 0.081149 23 22
11 5 5 -1.872873 32 20
答案 1 :(得分:1)
不确定为什么pandas需要这样一个涉及R的操作看起来如此简单的操作,但是就在这里,mask
/ where
+ shift
+ fillna
:
df['col3'] = (
df.col2.where(df.id != df.id_old).shift().fillna(df.col3).astype(int)
)
df
id id_old col1 col2 col3
0 1 1 0.308380 23 20
1 1 1 1.185646 35 20
2 1 2 -0.432066 27 20
3 2 2 0.115055 32 27
4 2 3 0.683291 34 20
5 3 4 -1.916321 42 34
6 4 4 0.888327 34 42
7 4 4 1.312879 29 20
8 4 4 1.260612 27 20
9 4 5 0.062635 22 20
10 5 5 0.081149 23 22
11 5 5 -1.872873 32 20
答案 2 :(得分:1)
IIUC
mask = (df.id_old - df.id).shift().fillna(0).astype(bool)
df.loc[mask, "col3"] = df.loc[mask, "col2"]