我正在学习本教程:
Training and Testing on our Data for Deep Learning
代码是:
import tensorflow as tf
#from tensorflow.examples.tutorials.mnist import input_data
import pickle
import numpy as np
train_x,train_y,test_x,test_y = create_feature_sets_and_labels('pos.txt','neg.txt')
n_nodes_hl1 = 1500
n_nodes_hl2 = 1500
n_nodes_hl3 = 1500
n_classes = 2
batch_size = 100
hm_epochs = 10
x = tf.placeholder('float')
y = tf.placeholder('float')
hidden_1_layer = {'f_fum':n_nodes_hl1,
'weight':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'f_fum':n_nodes_hl2,
'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'f_fum':n_nodes_hl3,
'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'f_fum':None,
'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'bias':tf.Variable(tf.random_normal([n_classes])),}
# Nothing changes
def neural_network_model(data):
l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=prediction,logits=y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
i=0
while i < len(train_x):
start = i
end = i+batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
epoch_loss += c
i+=batch_size
print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))
train_neural_network(x)
不幸的是,它给了我以下错误:
ValueError:没有为任何变量提供渐变,检查图表中不支持渐变的操作,变量之间[&#34;&#34;,&#34;&#34;,&#34;&# 34;,&#34;&#34;,&#34;&#34;,&#34;&#34;,&#34;&#34;,&#34;&#34;,&# 34;&#34;,&#34;&#34;,&#34;&#34;,&#34;&#34;,&#34;&#34;,&#34;&#34 ;,&#34;&#34;,&#34;&#34;]和丢失张量(&#34;平均值:0&#34;,dtype = float32)。
如果您能帮忙解决这个问题,我将不胜感激。
答案 0 :(得分:1)
我自己没有尝试过:你需要改变
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=prediction,logits=y) )
到
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction) )
TF文档指出:&#34; 反向传播只会发生在logits中。要计算允许反向传播到logits和标签的交叉熵损失,请参阅tf.nn.softmax_cross_entropy_with_logits_v2。&#34;