我使用ode
方法编写了一个解码rk4
的代码
这是代码:
from __future__ import division
import math
import numpy as np
from math import exp
def f(t,y):
return 5*t**2-y/math.e**(t+y)
def rk4(t,y,h,i):
p=[0]*i
p[0] = y
for n in range(0,i):
g=11
k1=round(h*f((t+n*h),y),g)
k2=round(h*f((t+n*h)+(h/2),y+k1/2),g)
k3=round(h*f((t+n*h)+h/2,y+k2/2),g)
k4=round(h*f((t+n*h)+h,y+k3),g)
p[n+1]=p[n]+(1/6)*(k1+2*k2+2*k3+k4)
print(k1,k2,k3,k4)
a=rk4(0,1,0.1,3)
print(a)
当我尝试打印k的系数时,它显示列表分配索引超出范围错误,当我尝试打印p的值时,输出
[1, 0.9666652135433333, 0]
我不明白为什么第三项是0 我该如何解决这些问题?
答案 0 :(得分:1)
我改进了您的代码段:
from __future__ import division
import math
def f(t, y):
return 5 * t**2 - y/math.e**(t + y)
def rk4(t, y, h, i):
p = list()
p.append(y)
for n in range(0, i):
g = 11
k1 = round(h * f((t + n * h), y), g)
k2 = round(h * f((t + n * h) + (h/2), y + k1/2), g)
k3 = round(h * f((t + n * h) + (h/2), y + k2/2), g)
k4 = round(h * f((t + n * h) + h, y + k3), g)
p.append(p[n] + (1/6) * (k1 + 2 * k2 + 2 * k3 + k4))
print(k1, k2, k3, k4)
rk4(0, 1, 0.1, 3)
输出:
(-0.03678794412, -0.03373778195, -0.03373873966, -0.0282677314)
(-0.02828710837, -0.02041047991, -0.02041201684, -0.01011306051)
(-0.01011942119, 0.00259988829, 0.0025995445, 0.01774691262)