我一直在使用github tensorflow hub上的retain示例,并且在尝试添加这两项内容时遇到了一些问题:
This is the link to the retrain example
对于混淆矩阵,我将run eval功能更改为以下
def run_final_eval(train_session, module_spec, class_count, image_lists,
jpeg_data_tensor, decoded_image_tensor,
resized_image_tensor, bottleneck_tensor):
#Runs a final evaluation on an eval graph using the test data set.
Args:
train_session: Session for the train graph with the tensors below.
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
image_lists: OrderedDict of training images for each label.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_image_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(train_session, image_lists,
FLAGS.test_batch_size,
'testing', FLAGS.bottleneck_dir,
FLAGS.image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor,
bottleneck_tensor, FLAGS.tfhub_module))
(eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
prediction) = build_eval_session(module_spec, class_count)
test_accuracy, predictions = eval_session.run(
[evaluation_step, prediction],
feed_dict={
bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth
})
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
(test_accuracy * 100, len(test_bottlenecks)))
confusion = tf.confusion_matrix(labels=test_ground_truth, predictions=predictions,num_classes=class_count)
print(confusion)
if FLAGS.print_misclassified_test_images:
tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i]:
tf.logging.info('%70s %s' % (test_filename,
list(image_lists.keys())[predictions[i]]))
输出结果为:
INFO:tensorflow:Final test accuracy = 88.5% (N=710)
INFO:tensorflow:=== CONwaka ===
Tensor("confusion_matrix/SparseTensorDenseAdd:0", shape=(5, 5), dtype=int32)
我也尝试使用tf.logging.info获得相同的结果。我想以数组形式打印出来。我发现这个Answer by MLninja似乎也是一个更好的解决方案,但我无法弄清楚如何在重新训练文件中实现它。
非常感谢任何帮助!
答案 0 :(得分:0)
您需要评估混淆矩阵张量。现在您将混淆矩阵操作添加到图形并打印操作,但您想要的是打印操作的结果,即矩阵。在代码中,它看起来像这样:
confusion_matrix_np = eval_session.run(
confusion,
feed_dict={
bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth
})
print(confusion_matrix_np)