我有一个带有字符串列df
的pandas数据帧Posts
,如下所示:
df['Posts']
0 "This is an example #tag1"
1 "This too is an example #tag1 #tag2"
2 "Yup, still an example #tag1 #tag1 #tag3"
当我尝试使用以下代码来计算主题标签的数量时,
count_hashtags = df['Posts'].str.extractall(r'(\#\w+)')[0].value_counts()
我明白了,
#tag1 4
#tag2 1
#tag3 1
但我需要将结果计算为每行唯一的标签,如下所示:
#tag1 3
#tag2 1
#tag3 1
答案 0 :(得分:2)
使用drop_duplicates
删除每个帖子的重复标签,然后您可以使用value_counts
df.Posts.str.extractall(
r'(\#\w+)'
).reset_index().drop_duplicates(['level_0', 0])[0].value_counts()
将level=0
传递给reset_index
df.Posts.str.extractall(
r'(\#\w+)'
).reset_index(level=0).drop_duplicates()[0].value_counts()
两者都会输出:
#tag1 3
#tag3 1
#tag2 1
Name: 0, dtype: int64
答案 1 :(得分:1)
这是一个使用itertools.chain
和collections.Counter
的解决方案:
import pandas as pd
from collections import Counter
from itertools import chain
s = pd.Series(['This is an example #tag1',
'This too is an example #tag1 #tag2',
'Yup, still an example #tag1 #tag1 #tag3'])
tags = s.map(lambda x: {i[1:] for i in x.split() if i.startswith('#')})
res = Counter(chain.from_iterable(tags))
print(res)
Counter({'tag1': 3, 'tag2': 1, 'tag3': 1})
效果基准
对于大型系列, collections.Counter
的速度是pd.Series.str.extractall
的2倍:
import pandas as pd
from collections import Counter
from itertools import chain
s = pd.Series(['This is an example #tag1',
'This too is an example #tag1 #tag2',
'Yup, still an example #tag1 #tag1 #tag3'])
def hal(s):
return s.str.extractall(r'(\#\w+)')\
.reset_index(level=0)\
.drop_duplicates()[0]\
.value_counts()
def jp(s):
tags = s.map(lambda x: {i[1:] for i in x.split() if i.startswith('#')})
return Counter(chain.from_iterable(tags))
s = pd.concat([s]*100000, ignore_index=True)
%timeit hal(s) # 2.76 s per loop
%timeit jp(s) # 1.25 s per loop