我正试图找到一种方法来卷积转置可变大小的图像。 我使用了tf.nn.conv2d_transpose api,但我失败了。
<dependency>
<groupId>org.apache.tomcat.embed</groupId>
<artifactId>tomcat-embed-jasper</artifactId>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
</dependency>
import tensorflow as tf
def conv2d_transpose(inputs, filters_shape, strides, name, padding="SAME", activation=None):
filters = get_conv_filters(filters_shape, name)
inputs_shape = inputs.get_shape().as_list()
output_shape = tf.stack(calc_output_shape(inputs_shape, filters_shape, strides, padding)) #tf.pack renamed tf.stack
strides = [1,*strides,1]
conv_transpose = tf.nn.conv2d_transpose(inputs, filters, output_shape=output_shape,
strides=strides, padding=padding, name=name+"transpose")
if activation != None:
conv_transpose = activation(conv_transpose)
return conv_transpose
def get_conv_filters(filters_size, name):
conv_weights = tf.Variable(tf.truncated_normal(filters_size), name=name + "weights")
return conv_weights
def calc_output_shape(inputs_shape, filters_shape, strides, padding): # For conv_transpose
batch_size, inputs_height, inputs_width, n_channel = inputs_shape
filters_height, filters_width, before_n_channel, after_n_channel = filters_shape
strides_height, strides_width = strides
if padding =="SAME":
output_height = inputs_height*strides_height
output_width = inputs_width*strides_width
else: # padding="VALID"
output_height = (inputs_height-1)*strides_height+filters_height
output_width = (inputs_width-1)*strides_width+filters_width
return [batch_size, output_height, output_width, after_n_channel]
然后,我收到以下错误。
input_images = tf.placeholder(tf.float32, [None, None, None, 3])
transpose_layer = conv2d_transpose(input_images, filters_shape=[3,3,3,3], strides=[2,2], name="conv_3_transpose", padding="SAME", activation=tf.nn.relu)
我认为这个错误的原因是input_shape没有修复。因此,在计算output_shape时会发生错误。 我该如何克服这个问题?
答案 0 :(得分:2)
使用动态形状,您可以找到详细信息here。您的input_shape
应为:
inputs_shape = tf.shape(inputs)
...
batch_size, inputs_height, inputs_width, n_channel = inputs_shape[0],inputs_shape[1],inputs_shape[2],inputs_shape[3]