keras中的1D卷积序列

时间:2018-05-29 01:33:58

标签: functional-programming keras convolution

我是一个努力构建网络以将2个浮点序列分类为16450个不同整数之一的菜鸟。我有70408个样本,我已经为每个样本填充了1400个值。因此,1个样本具有2个列向量,例如。 [104.243,120.12 ...],[125.25,14.556 ...]。我的x_train都是大小(70408,1400)。我正在尝试使用keras的功能API,但似乎无法找出正确的输入形状。任何帮助将不胜感激。

samples = 70408
mass_size = 1400
intensity_size = 1400
output_size = 16450

mass_input = Input(shape=(samples,mass_size), dtype='float32')
mass_net = layers.Conv1D(32,5,activation='relu')(mass_input)
mass_net = layers.AveragePooling1D(3)(mass_net)
mass_net = layers.Conv1D(16,5,activation='relu')(mass_net)
mass_net = layers.GlobalAveragePooling1D()(mass_net)

intensity_input = Input(shape=(samples,intensity_size), dtype='float32')
intensity_net = layers.Conv1D(32,5,activation='relu')(intensity_input)
intensity_net = layers.AveragePooling1D(3)(intensity_net)
intensity_net = layers.Conv1D(16,5,activation='relu')(intensity_net)
intensity_net = layers.GlobalAveragePooling1D()(intensity_net)

concatenated = layers.concatenate([mass_net,intensity_net],axis=-1)

output = layers.Dense(output_size,activation='softmax')(concatenated)


print(mass_data.shape, intensity_data.shape)
model = Model([mass_data,intensity_data],output)
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['acc'])

model.fit([mass_data,intensity_data],y_train,epochs=10,batch_size=128)

我不断得到的错误是:

TypeError                                 Traceback (most recent call last)
<ipython-input-18-aab93c439dd0> in <module>()
     28 
     29 print(mass_data.shape, intensity_data.shape)
---> 30 model = Model([mass_data,intensity_data],output)
     31 model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['acc'])
     32 

~\Anaconda3\envs\deeplearning\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
     89                 warnings.warn('Update your `' + object_name +
     90                               '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 91             return func(*args, **kwargs)
     92         wrapper._original_function = func
     93         return wrapper

~\Anaconda3\envs\deeplearning\lib\site-packages\keras\engine\topology.py in __init__(self, inputs, outputs, name)
   1528 
   1529         # Check for redundancy in inputs.
-> 1530         if len(set(self.inputs)) != len(self.inputs):
   1531             raise ValueError('The list of inputs passed to the model '
   1532                              'is redundant. '

TypeError: unhashable type: 'numpy.ndarray'

1 个答案:

答案 0 :(得分:0)

问题似乎在这里:

model = Model([mass_data,intensity_data],output)

您应该使用您创建的输入张量,而不是numpy数据:

model = Model([mass_input, intensity_input],output)

与我的旧评论相关的另一个问题是input_shape

由于现在您的数据为(样本,长度,功能),因此您需要input_shape=(length,features)