我有大量的数据记录要使用批处理和压缩为Kafka生成。
我已经尝试了许多生产者的属性来修复异常/超时,同时将数据发送给代理。
Update
以下是我的属性
const float timeToCountAsHeldDown = 0.3f;
float pressTimer = 0;
IEnumerator moveChecker()
{
while (true)
{
//Check when the D key is pressed
if (Input.GetKeyDown(KeyCode.D))
{
//Continue to check if it is still heldown and keep counting the how long
while (Input.GetKey(KeyCode.D))
{
//Start incrementing timer
pressTimer += Time.deltaTime;
//Check if this counts as being "Held Down"
if (pressTimer > timeToCountAsHeldDown)
{
//It a "key held down", call the OnKeyHeldDown function and wait for it to return
yield return OnKeyHeldDown();
//No need to continue checking for Input.GetKey(KeyCode.D). Break out of this whule loop
break;
}
//Wait for a frame
yield return null;
}
}
//Check if "D" key is released
if (Input.GetKeyUp(KeyCode.D))
{
//Check if we have not not reached the timer then it is only a key press
if (pressTimer < timeToCountAsHeldDown)
{
//It just a key press, call the OnKeyPressedOnly function and wait for it to return
yield return OnKeyPressedOnly();
}
//Reset timer to 0 for the next key press
pressTimer = 0f;
}
//Wait for a frame
yield return null;
}
}
IEnumerator OnKeyPressedOnly()
{
Debug.Log("D key was only Pressed");
//Move 1 unit only
transform.position += new Vector3(1, 0, 0);
yield return null;
}
IEnumerator OnKeyHeldDown()
{
Debug.LogWarning("D key is Held Down");
//Don't move for 0.5 seconds
yield return new WaitForSeconds(0.5f);
//Move 1 unit every frame until edge detection is reached!
while (!CheckIsValidPosition())
{
transform.position += new Vector3(1, 0, 0);
//Wait for a frame
yield return null;
}
}
肯定会增加超时和其他大值会影响我的制作人的吞吐量。
我怀疑哪一个是好的。 1.通过增加batch.size,其他超时来优化batch.size。 2.使用重试计数+超时属性的最佳值。
例外
My one record size is 5486 Bytes(total count is around 20000).