我尝试创建一个简单的Doc2Vec模型:
sentences = []
sentences.append(doc2vec.TaggedDocument(words=[u'scarpe', u'rosse', u'con', u'tacco'], tags=[1]))
sentences.append(doc2vec.TaggedDocument(words=[u'scarpe', u'blu'], tags=[2]))
sentences.append(doc2vec.TaggedDocument(words=[u'scarponcini', u'Emporio', u'Armani'], tags=[3]))
sentences.append(doc2vec.TaggedDocument(words=[u'scarpe', u'marca', u'italiana'], tags=[4]))
sentences.append(doc2vec.TaggedDocument(words=[u'scarpe', u'bianche', u'senza', u'tacco'], tags=[5]))
model = Doc2Vec(alpha=0.025, min_alpha=0.025) # use fixed learning rate
model.build_vocab(sentences)
但我最终得到一个空洞的词汇。通过一些调试,我发现在build_vocab()函数中,一个字典实际上是由vocabulary.scan_vocab()函数创建的,但它被以下的vocabulary.prepare_vocab()函数删除。更深刻的是,这是导致问题的功能:
def keep_vocab_item(word, count, min_count, trim_rule=None):
"""Check that should we keep `word` in vocab or remove.
Parameters
----------
word : str
Input word.
count : int
Number of times that word contains in corpus.
min_count : int
Frequency threshold for `word`.
trim_rule : function, optional
Function for trimming entities from vocab, default behaviour is `vocab[w] <= min_reduce`.
Returns
-------
bool
True if `word` should stay, False otherwise.
"""
default_res = count >= min_count
if trim_rule is None:
return default_res # <-- ALWAYS RETURNS FALSE
else:
rule_res = trim_rule(word, count, min_count)
if rule_res == RULE_KEEP:
return True
elif rule_res == RULE_DISCARD:
return False
else:
return default_res
有人理解这个问题吗?
答案 0 :(得分:2)
我自己找到了答案,min_count的默认值是5,而且我没有5或更多计数器的单词。 我只需要改变这行代码:
@dispatcher.message_handler(PhotoFilter())
def ask_photo(bot, update):
user_peer = update.get_effective_user()
bot.upload_file(file="../files/upload_file_test.jpeg",
file_type="file",
success_callback=file_upload_success,failure_callback=failure)
def file_upload_success(response):
photo_message = PhotoMessage(file_id=response.file_id,
access_hash=response.access_hash, name="photo", file_size="100",
mime_type="image/jpeg", thumb=response.thumb, width=80, height=80,
caption_text="caption")
bot.send_message(photo_message, user_peer)