反应性读取和渲染shapefile

时间:2018-05-28 11:23:47

标签: r shiny leaflet reactive-programming rgdal

我的目的是通过Shiny + Leaflet呈现一个反应性地图:我想使用两个重叠的层," confini.comuni.WGS84" &#34 ; confini.asl.WGS84" ,用于绘制反应层。

根据值'inputId = "Year.map"',服务器会读取图层' zone.WGS84' ('layer = paste0 ("zone_", anno.map ())', EX "zone_2015")并根据以下值之一为多边形着色数据框中的字段(" SIST_NERV"," MESOT"," TUM_RESP")通过'inputId = "Pathology.map"'选择。

shapefile " zone_2000.shp" 等..存储在" App / shapes / zone" 中,shapefile " rt.confini.comunali.shp" " rt.confini.regionali.shp" 存储在& #34;应用/形状/ originali"

应用和文件为here

与shapesfile" zone_2016"相关的data.frame;是:

 EXASLNOME                     Anno SIST_NERV SIST_NERVp MESOT MESOTp TUM_RESP TUM_RESPp
 Az. USL 1 di Massa Carrara    2016        43         41     1      1        4         4     
 Az. USL 2 di Lucca            2016        45         45    11     10        3         3
 Az. USL 3 di Pistoia          2016        26         21    13     13        5         5
 Az. USL 4 di Prato            2016         6          6     8      8       NA        NA
 Az. USL 5 di Pisa             2016       155        146     3      3        2         2
 Az. USL 6 di Livorno          2016       137        136    17     17       20        18
 Az. USL 7 di Siena            2016        29         24     1      1       NA        NA
 Az. USL 8 di Arezzo           2016        31         29     3      3        2         2
 Az. USL 9 di Grosseto         2016        35         34     2      2        1         1
 Az. USL 10 di Firenze         2016        34         33    24     13       11         4
 Az. USL 11 di Empoli          2016        30         29     2      2       20        20
 Az. USL 12 di Viareggio       2016       130        129     7      7        3         3 

接下来,Leaflet必须创建一个基于data.frame的' EXASLNOME' 'pat.map()'数据的反应性标签。 最后,必须通过发送至map()的{​​{1}}生成renderLeaflet地图。 这会产生此错误:

  

警告:域中出错:无法找到功能"域"堆栈跟踪   (最里面的第一个):91:colorQuantile 90:   [C:/Users/User/Downloads/Prova_mappe/App_per_Stackoverflow.r#63] 79:   mappa 78:func   [C:/Users/User/Downloads/Prova_mappe/App_per_Stackoverflow.r#95] 77:   origRenderFunc 76:输出$ Mappa.ASL 1:runApp

我无法使用所有反应组件作为参数传递给Leaflet函数,你能告诉我什么吗?

output$Map.ASL

3 个答案:

答案 0 :(得分:0)

错误消息应该非常清楚。您正在使用您从未分配过的函数domain()

ColorQuantile 需要域的数值,因此您必须在其中提供包含数值的列。基于它们的传单将产生颜色。

 pal <- colorQuantile(palette = "YlOrRd",  
                             domain =  dataframe$numericVariable, 
                             n = 6,
                             na.color = "808080", 
                             alpha = FALSE, reverse = FALSE, 
                             right = FALSE)

并在第二个addPolygon函数中更改此行:

fillColor = pal(dataframe$numericVariable),

您必须将dataframe$numericVariable调整到您要用于着色的data.frame列。

请参阅以下示例:

library(shiny)
library(leaflet)

dataframe <- data.frame(
  x = runif(n = 40, 15, 18),
  y = runif(n = 40, 50, 55),
  numericVariable = runif(n = 40, 1, 100)
)

ui <- fluidPage(
  leafletOutput("map")
)

server <- function(input, output){

  output$map <- renderLeaflet({
    pal <- colorQuantile(palette = "YlOrRd",  
                         domain =  dataframe$numericVariable, 
                         n = 6,
                         na.color = "808080", 
                         alpha = FALSE, reverse = FALSE, 
                         right = FALSE)

    leaflet() %>% 
      addTiles() %>% 
      addCircleMarkers(lng = ~x, lat = ~y, data=dataframe, 
                       fillColor = pal(dataframe$numericVariabl), fillOpacity = 1)
  })
}
shinyApp(ui, server)

答案 1 :(得分:0)

谢谢,我试着听从你的建议:我使用

从形状创建了一个data.frame
map <- reactive({readOGR(dsn = "shapes/zone", 
                         layer = paste0("zone_", anno.map()), stringsAsFactors = FALSE)})

map.df <- reactive({map() %>% 
                    as.data.frame() %>% 
                    select(EXASLNOME, pat.map(), pat.map.p())})

请注意&#34; map&#34;和&#34; map.df&#34;是反应性的。

&#34; pat.map&#34;是data.frame&#34; map.df&#34;的列的名称。作为输入值(输入$ Pathology.map)和&#34; pat.map.p&#34;是同一data.frame的另一列的名称。 我使用数字字段map.df()[,2]作为&#34;域&#34; &#34; pal&#34;的参数功能

pal <- colorQuantile(palette = "YlOrRd",  
                            domain = map.df()[,2], 
                            n = 6,  
                            na.color = "808080", 
                            alpha = FALSE, 
                            reverse = FALSE, 
                            right = FALSE)

我还用

创建了一个反应性标签
labels <- sprintf("<strong>%s</strong> <br/> %d Segnalazioni <br/> %d con nesso positivo",
                            map.df()[,1], map.df()[,2], map.df()[,3]) %>% 
                            lapply(htmltools::HTML)

这是新脚本

require(shiny)
require(stringr)
require(shinythemes)
require(leaflet)
require(RColorBrewer)
require(rgdal)
require(rgeos)

#### UI ####
ui <- fluidPage(
    theme = shinytheme("spacelab"),
    titlePanel("Indice"),
    navlistPanel( 
        tabPanel(title = "Mappe",
                fluidRow(column(6, sliderInput(inputId = "Anno.map",
                                               label = "Anno di manifestazione",
                                               min = 2000,
                                               max = 2016, 
                                               value = 2016,
                                               step = 1,
                                               ticks = FALSE,
                                               sep = "")),
                        column(6, selectInput(inputId = "Patologia.map",
                                              label = "Patologia",
                                              choices = list("SIST_NERV", "MESOT","TUM_RESP"),
                                              selected = "SIST_NERV",
                                              multiple = FALSE))),
                fluidRow(column(6, leafletOutput(outputId = "Mappa.ASL", height = "600px", width = "100%")))
        )
    )
)

#### SERVER ####
server <- function(input, output) {

# NOT REACTIVE 
confini.comuni <- readOGR(dsn = "shapes/originali", layer = "rt.confini.comunali", stringsAsFactors = FALSE)
confini.comuni.WGS84 <- spTransform(confini.comuni, CRS("+proj=longlat +datum=WGS84 +no_defs")) 

confini.zone <- readOGR(dsn = "shapes/originali", layer = "rt.confini.exasl", stringsAsFactors = FALSE)
confini.zone.WGS84 <- spTransform(confini.zone, CRS("+proj=longlat +datum=WGS84 +no_defs"))

confini.asl <- readOGR(dsn = "shapes/originali", layer = "rt.confini.asl", stringsAsFactors = FALSE)
confini.asl.WGS84 <- spTransform(confini.asl, CRS("+proj=longlat +datum=WGS84 +no_defs"))

mappa.base <- leaflet(options = leafletOptions(zoomControl = FALSE, 
                                             dragging = FALSE, 
                                             minZoom = 7.5, 
                                             maxZoom = 7.5)) %>%   
addPolygons(data = confini.comuni.WGS84,
            weight = 1,
            opacity = 1,
            color = "black") %>%   
addPolygons(data = confini.zone.WGS84,
            weight = 2,
            opacity = 1,
            color = "black")

# REACTIVE 
anno.map <- reactive({input$Anno.map})
pat.map <- reactive({input$Patologia.map})
pat.map.p <- reactive({paste0(pat.map(), "p")})

map <- reactive({spTransform(readOGR(dsn = "shapes/zone", 
                             layer = paste0("zone_", anno.map()), stringsAsFactors = FALSE),
                             CRS("+proj=longlat +datum=WGS84 +no_defs"))}) 

map.df <- reactive({map() %>% 
                    as.data.frame() %>% 
                    select(EXASLNOME, pat.map(), pat.map.p())})

mappa <- reactive({             
        pal <- colorQuantile(palette = "YlOrRd",  
                            domain = map.df()[,2], 
                            n = 6,  
                            na.color = "808080", 
                            alpha = FALSE, 
                            reverse = FALSE, 
                            right = FALSE)

        labels <- sprintf("<strong>%s</strong> <br/> %d Segnalazioni <br/> %d con nesso positivo",
                            map.df()[,1], map.df()[,2], map.df()[,3]) %>% 
                            lapply(htmltools::HTML)

        leafletProxy(mapId = "mappa.base", data = map()) %>%
        addPolygons(fillColor = ~pal(map.df()[,2]),
                    weight = 2,
                    opacity = 1,
                    color = "white",
                    dashArray = "3",
                    fillOpacity = 0.7,
                    highlight = highlightOptions(weight = 5,
                                                 color = "666",
                                                 dashArray = "",
                                                 fillOpacity = 0.7,
                                                 bringToFront = TRUE),
                    label = labels()
                    )
        })


    output$Mappa.ASL <- renderLeaflet({mappa()})

}

# Run the application 
shinyApp(ui = ui, server = server)

启动应用程序,&#34;标签&#34;似乎存在问题。

> runApp('App')

Listening on http://127.0.0.1:3307
OGR data source with driver: ESRI Shapefile 
Source: "shapes/originali", layer: "rt.confini.comunali"
with 274 features
It has 11 fields
OGR data source with driver: ESRI Shapefile 
Source: "shapes/originali", layer: "rt.confini.exasl"
with 12 features
It has 2 fields
OGR data source with driver: ESRI Shapefile 
Source: "shapes/originali", layer: "rt.confini.asl"
with 3 features
It has 1 fields
OGR data source with driver: ESRI Shapefile 
Source: "shapes/zone", layer: "zone_2016"
with 12 features
It has 40 fields
Warning: Error in labels.default: argument "object" is missing, with no default
Stack trace (innermost first):
    108: labels.default
    107: labels
    106: safeLabel
    105: evalAll
    104: evalFormula
    103: invokeMethod
    102: eval
    101: eval
    100: %>%
    99: addPolygons
    98: function_list[[k]]
    97: withVisible
    96: freduce
    95: _fseq
    94: eval
    93: eval
    92: withVisible
    91: %>%
    90: <reactive:mappa> [S:\ProgettiR\ReportMalprof_ShinyApp\App/app.R#86]
    79: mappa
    78: func [S:\ProgettiR\ReportMalprof_ShinyApp\App/app.R#103]
    77: origRenderFunc
    76: output$Mappa.ASL
    1: runApp

答案 2 :(得分:0)

您的代码中存在多个错误,缺少的标签只是一个小问题。

首先,您可以将所有非反应值放在服务器函数之外,也许您应该将 confini。* shapefiles 保存到RDS文件或数据库并从那里加载它们。我想这会加快你的App。

您的传单图从未显示过,因为您将对象mappa()渲染到输出ID = Mappa.ASL。反应性mappa不会创建地图,但不返回地图或任何对象,因此您应将reactive更改为observer。 LeafletProxy只是在原始地图上添加了东西(在你的情况下为mappa.base),你从未在UI中使用过。

您的错误来自于调用labels = labels()中的addPolygons,好像标签是一个被动对象,但是您在相同的被动环境中定义它,因此您可以不使用括号来调用它:

labels = labels

而不是从那些中获取反应值:

anno.map <- reactive({input$Anno.map})
pat.map <- reactive({input$Patologia.map})
pat.map.p <- reactive({paste0(pat.map(), "p")})

您可以将它们用作反应,例如:

input$Anno.map
input$Patologia.map
paste0(pat.map(), "p")

我也不会使用响应(map),它总是从磁盘读取shapefile并立即重新投影。你可以将它们合并到一个shapefile中,然后从中过滤并预先重新投影它们,这样你每次调用应用程序时都不必这样做吗?

以下应用应该有效。至少有一点,因为你会在像这样的colorQuantile函数中运行错误,因为数据集中有NA值(例如,2009-2006年为&#39; SIST_NERV&#39;)

  

警告:cut.default出错:&#39;中断&#39;不是唯一的

您可以将colorQuantile更改为colorBin并删除n = 6参数。

require(shiny)
require(stringr)
require(shinythemes)
require(leaflet)
require(RColorBrewer)
require(rgdal)
require(rgeos)


# NOT REACTIVE 
confini.comuni <- readOGR(dsn = "shapes/originali", layer = "rt.confini.comunali", stringsAsFactors = FALSE)
confini.comuni.WGS84 <- spTransform(confini.comuni, CRS("+proj=longlat +datum=WGS84 +no_defs"))

confini.zone <- readOGR(dsn = "shapes/originali", layer = "rt.confini.exasl", stringsAsFactors = FALSE)
confini.zone.WGS84 <- spTransform(confini.zone, CRS("+proj=longlat +datum=WGS84 +no_defs"))

confini.asl <- readOGR(dsn = "shapes/originali", layer = "rt.confini.asl", stringsAsFactors = FALSE)
confini.asl.WGS84 <- spTransform(confini.asl, CRS("+proj=longlat +datum=WGS84 +no_defs"))


#### UI ####
ui <- {fluidPage(
  theme = shinytheme("spacelab"),
  titlePanel("Indice"),
  navlistPanel( 
    tabPanel(title = "Mappe",
             fluidRow(column(6, sliderInput(inputId = "Anno.map",
                                            label = "Anno di manifestazione",
                                            min = 2000, max = 2016, value = 2016, step = 1,
                                            ticks = FALSE, sep = "")),
                      column(6, selectInput(inputId = "Patologia.map",
                                            label = "Patologia", choices = list("SIST_NERV", "MESOT","TUM_RESP"),
                                            selected = "SIST_NERV", multiple = FALSE))),
             fluidRow(column(6, 
                             leafletOutput(outputId = "mappa.base", height = "600px", width = "100%")
                             ))
    )
  )
)}


#### SERVER ####
server <- function(input, output) {

  # REACTIVE 
  map <- reactive({
    req(input$Anno.map)
    spTransform(readOGR(dsn = "shapes/zone", layer = paste0("zone_", input$Anno.map), stringsAsFactors = FALSE),
                CRS("+proj=longlat +datum=WGS84 +no_defs"))
  })

  output$mappa.base <- renderLeaflet({
    leaflet(options = leafletOptions(zoomControl = FALSE, dragging = FALSE, 
                                     minZoom = 7.5, maxZoom = 7.5)) %>%   
      addTiles() %>% 
      addPolygons(data = confini.comuni.WGS84,
                  weight = 1, opacity = 1, color = "black") %>%
      addPolygons(data = confini.zone.WGS84,
                  weight = 2, opacity = 1, color = "black")
  })


  map.df <- reactive({
    req(input$Anno.map)
    map() %>%
      as.data.frame() %>%
      dplyr::select(EXASLNOME, input$Patologia.map, paste0(input$Patologia.map, "p"))
  })

  mappa <- observe({
    pal <- colorQuantile(palette = "YlOrRd",  domain = map.df()[,2],
                         n = 6,  na.color = "808080",
                         alpha = FALSE, reverse = FALSE,
                         right = FALSE)

    labels <- sprintf("<strong>%s</strong> <br/> %d Segnalazioni <br/> %d con nesso positivo",
                      map.df()[,1], map.df()[,2], map.df()[,3]) %>% lapply(htmltools::HTML)

    leafletProxy(mapId = "mappa.base", data = map()) %>%
      addPolygons(fillColor = ~pal(map.df()[,2]),
                  weight = 2,
                  opacity = 1,
                  color = "white",
                  dashArray = "3",
                  fillOpacity = 0.7,
                  highlight = highlightOptions(weight = 5,
                                               color = "666",
                                               dashArray = "",
                                               fillOpacity = 0.7,
                                               bringToFront = TRUE),
                  label = labels
      )
  })
}

# Run the application 
shinyApp(ui = ui, server = server)