我有以下数组:
example_array = [[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]
indexes = [[1,2,3], [2,3], [0,4,2], [1,4,3], [0,4,3], [1,2,3], [1,2]]
我想根据索引中的索引将example_array中的元素替换为1。所以,预期的结果应该是:
example_array = [[0,1,1,1,0],[0,0,1,1,0],[1,0,1,0,1],[0,1,0,1,1],[1,0,0,1,1],[0,1,1,1,0],[0,1,1,0,0]].
我尝试了不同的方法,例如使用pandas,如下所示:
matrix = pd.DataFrame(example_array)
for row in matrix:
for i in indexes:
for j in i:
x_u.iloc[x, j] = 1
但它并没有给我带来希望的结果!该解决方案不需要使用pandas库。 谢谢你的帮助!
答案 0 :(得分:2)
你可以这样做:
example_array = [[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]
indexes = [[1,2,3], [2,3], [0,4,2], [1,4,3], [0,4,3], [1,2,3], [1,2]]
for i,index in enumerate(indexes):
for idx in index:
example_array[i][idx] = 1
print example_array
输出:
[[0, 1, 1, 1, 0], [0, 0, 1, 1, 0], [1, 0, 1, 0, 1], [0, 1, 0, 1, 1], [1, 0, 0, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 0]]
答案 1 :(得分:1)
试试这个:
WHEN NOT MATCHED BY TARGET AND (source.BitCondition = 0) THEN
INSERT INTO TargetTable
它还为您节省了嵌套循环!
答案 2 :(得分:1)
使用numpy数组,您可以直接将指定的索引设置为所需的值。
import numpy as np
example_array = np.array([[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]])
indexes = [[1,2,3], [2,3], [0,4,2], [1,4,3], [0,4,3], [1,2,3], [1,2]]
for i, ind in enumerate(indexes):
example_array[i, ind] = 1
print(a)
<强>输出强>
[[0 1 1 1 0]
[0 0 1 1 0]
[1 0 1 0 1]
[0 1 0 1 1]
[1 0 0 1 1]
[0 1 1 1 0]
[0 1 1 0 0]]
答案 3 :(得分:1)
example_array = [[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]];
indexes = [[1,2,3], [2,3], [0,4,2], [1,4,3], [0,4,3], [1,2,3], [1,2]];
for i in range(0, len(example_array)):
for j in range(0, len(indexes[i])):
example_array[i][indexes[i][j]] = 1;
print example_array;
答案 4 :(得分:1)
或者你可以使用理解:
result = [[1 if i in ind else e for i, e in enumerate(ea)] for ea, ind in zip(example_array, indexes)]
答案 5 :(得分:1)
有一个班轮:
indices = [[1, 2, 3], [2, 3], [0, 4, 2], [1, 4, 3], [0, 4, 3], [1, 2, 3], [1, 2]]
print([[1 if idx in sub else 0 for idx in range(5)] for sub in indices])
输出:
[[0, 1, 1, 1, 0], [0, 0, 1, 1, 0], [1, 0, 1, 0, 1], [0, 1, 0, 1, 1], [1, 0, 0, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 0]]