我有一张客户表(coper)和资产分配(资产)
A = [[1,2],[3,4],[5,6]]
idx = ['coper1','coper2','coper3']
cols = ['asset1','asset2']
df = pd.DataFrame(A,index = idx, columns = cols)
所以我的数据看起来像
asset1 asset2
coper1 1 2
coper2 3 4
coper3 5 6
我希望通过线性优化来运行它们(我有约束 - 像sum of all of asset_i <= amount_on_hand_i
和sum of coper_j = price_j
那样的somtehing)
所以我必须将这个2D矩阵变成一维矢量。这很容易融化
df2 = pd.melt(df,value_vars=['asset1','asset2'])
但是现在,当我尝试解开它时,我会得到一个包含大量空白的6行数组!
df2.pivot(columns = 'variable', values = 'value')
variable asset1 asset2
0 1.0 NaN
1 3.0 NaN
2 5.0 NaN
3 NaN 2.0
4 NaN 4.0
5 NaN 6.0
使用融化时,有没有办法保留索引的'coper'部分?
答案 0 :(得分:13)
您需要保留reset_index
和参数id_vars
的索引值:
df2 = pd.melt(df.reset_index(), id_vars='index',value_vars=['asset1','asset2'])
print (df2)
index variable value
0 coper1 asset1 1
1 coper2 asset1 3
2 coper3 asset1 5
3 coper1 asset2 2
4 coper2 asset2 4
5 coper3 asset2 6
然后转动工作很好:
print(df2.pivot(index='index',columns = 'variable', values = 'value'))
variable asset1 asset2
index
coper1 1 2
coper2 3 4
coper3 5 6
stack
的另一种可能解决方案:
df2 = df.stack().reset_index()
df2.columns = list('abc')
print (df2)
a b c
0 coper1 asset1 1
1 coper1 asset2 2
2 coper2 asset1 3
3 coper2 asset2 4
4 coper3 asset1 5
5 coper3 asset2 6
print(df2.pivot(index='a',columns = 'b', values = 'c'))
b asset1 asset2
a
coper1 1 2
coper2 3 4
coper3 5 6
答案 1 :(得分:3)
看起来像“可选参数keep_index到数据框熔化方法”进入了1.1版:https://github.com/pandas-dev/pandas/issues/17440
答案 2 :(得分:1)
将ignore_index设置为False,以保留索引,例如
df = df.melt(var_name=‘species’, value_name=‘height’, ignore_index = False)