可以使用joblib在python中对函数进行多次调用。
from joblib import Parallel, delayed
def normal(x):
print "Normal", x
return x**2
if __name__ == '__main__':
results = Parallel(n_jobs=2)(delayed(normal)(x) for x in range(20))
print results
给予:[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361]
但是,我真正想要的是并行调用类实例列表上的类函数。该函数只存储一个类变量。然后我会访问这个变量。
from joblib import Parallel, delayed
class A(object):
def __init__(self, x):
self.x = x
def p(self):
self.y = self.x**2
if __name__ == '__main__':
runs = [A(x) for x in range(20)]
Parallel(n_jobs=4)(delayed(run.p() for run in runs))
for run in runs:
print run.y
这会出错:
追踪(最近一次呼叫最后一次):
文件“”,第1行,in runfile('G:/ My Drive / CODE / stackoverflow / parallel_classfunc / parallel_classfunc.py', wdir ='G:/我的驱动器/ CODE / stackoverflow / parallel_classfunc')
文件 “C:\ ProgramData \ Anaconda2 \ LIB \站点包\ Spyder的\ utils的\网站\ sitecustomize.py” 第710行,在runfile中 execfile(filename,namespace)
文件 “C:\ ProgramData \ Anaconda2 \ LIB \站点包\ Spyder的\ utils的\网站\ sitecustomize.py” 第86行,在execfile中 exec(compile(scripttext,filename,'exec'),glob,loc)
档案“G:/我的 驱动器/ CODE /计算器/ parallel_classfunc / parallel_classfunc.py” 第12行,在 并行(n_jobs = 4)(延迟(运行中运行的run.p()))
文件 “C:\ ProgramData \ Anaconda2 \ lib \ site-packages \ joblib \ parallel.py”,行 183,在延迟 pickle.dumps(功能)
文件“C:\ ProgramData \ Anaconda2 \ lib \ copy_reg.py”,第70行,in _reduce_ex 引发TypeError,“无法选择%s对象”%base。 name
TypeError:无法pickle生成器对象
如何将joblib用于这样的类?还是有更好的方法?
答案 0 :(得分:2)
如何 是否可以将
joblib
与此类使用?
让我们首先提出一些代码抛光:
并非所有内容都符合joblib.Parallel()( delayed() )
呼叫签名功能:
# >>> type( runs ) <type 'list'>
# >>> type( runs[0] ) <class '__main__.A'>
# >>> type( run.p() for run in runs ) <type 'generator'>
所以,让我们让DEMO对象“通过” aContainerFUN()
:
StackOverflow_DEMO_joblib.Parallel.py
:
from sklearn.externals.joblib import Parallel, delayed
import time
class A( object ):
def __init__( self, x ):
self.x = x
self.y = "Defined on .__init__()"
def p( self ):
self.y = self.x**2
def aNormalFUN( aValueOfX ):
time.sleep( float( aValueOfX ) / 10. )
print ": aNormalFUN() has got aValueOfX == {0:} to process.".format( aValueOfX )
return aValueOfX * aValueOfX
def aContainerFUN( aPayloadOBJECT ):
time.sleep( float( aPayloadOBJECT.x ) / 10. )
# try: except: finally:
pass; aPayloadOBJECT.p()
print "| aContainerFUN: has got aPayloadOBJECT.id({0:}) to process. [ Has made .y == {1:}, given .x == {2: } ]".format( id( aPayloadOBJECT ), aPayloadOBJECT.y, aPayloadOBJECT.x )
time.sleep( 1 )
if __name__ == '__main__':
# ------------------------------------------------------------------
results = Parallel( n_jobs = 2
)( delayed( aNormalFUN )( aParameterX )
for aParameterX in range( 11, 21 )
)
print results
print '.'
# ------------------------------------------------------------------
pass; runs = [ A( x ) for x in range( 11, 21 ) ]
# >>> type( runs ) <type 'list'>
# >>> type( runs[0] ) <class '__main__.A'>
# >>> type( run.p() for run in runs ) <type 'generator'>
Parallel( verbose = 10,
n_jobs = 2
)( delayed( aContainerFUN )( run )
for run in runs
)
C:\Python27.anaconda> python StackOverflow_DEMO_joblib.Parallel.py
: aNormalFUN() has got aValueOfX == 11 to process.
: aNormalFUN() has got aValueOfX == 12 to process.
: aNormalFUN() has got aValueOfX == 13 to process.
: aNormalFUN() has got aValueOfX == 14 to process.
: aNormalFUN() has got aValueOfX == 15 to process.
: aNormalFUN() has got aValueOfX == 16 to process.
: aNormalFUN() has got aValueOfX == 17 to process.
: aNormalFUN() has got aValueOfX == 18 to process.
: aNormalFUN() has got aValueOfX == 19 to process.
: aNormalFUN() has got aValueOfX == 20 to process.
[121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
.
| aContainerFUN: has got aPayloadOBJECT.id(50369168) to process. [ Has made .y == 121, given .x == 11 ]
| aContainerFUN: has got aPayloadOBJECT.id(50369168) to process. [ Has made .y == 144, given .x == 12 ]
[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 2.4s
| aContainerFUN: has got aPayloadOBJECT.id(12896752) to process. [ Has made .y == 169, given .x == 13 ]
| aContainerFUN: has got aPayloadOBJECT.id(12896752) to process. [ Has made .y == 196, given .x == 14 ]
[Parallel(n_jobs=2)]: Done 4 tasks | elapsed: 4.9s
| aContainerFUN: has got aPayloadOBJECT.id(12856464) to process. [ Has made .y == 225, given .x == 15 ]
| aContainerFUN: has got aPayloadOBJECT.id(12856464) to process. [ Has made .y == 256, given .x == 16 ]
| aContainerFUN: has got aPayloadOBJECT.id(50368592) to process. [ Has made .y == 289, given .x == 17 ]
| aContainerFUN: has got aPayloadOBJECT.id(50368592) to process. [ Has made .y == 324, given .x == 18 ]
| aContainerFUN: has got aPayloadOBJECT.id(12856528) to process. [ Has made .y == 361, given .x == 19 ]
| aContainerFUN: has got aPayloadOBJECT.id(12856528) to process. [ Has made .y == 400, given .x == 20 ]
[Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 13.3s finished