从真实值和预测值获得准确性

时间:2018-05-25 09:03:39

标签: machine-learning scikit-learn keras deep-learning classification

我有predicted_yreal_y

是否有更快的方法来获得准确性:

from keras import backend as K

accuracy_array = K.eval(keras.metrics.categorical_accuracy(real_y, predicted_y))

print(sum(accuracy_array)/len(accuracy_array))

4 个答案:

答案 0 :(得分:2)

accuracy_score尝试scikit-learn

import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
accuracy_score(y_true, y_pred)

accuracy_score(y_true, y_pred, normalize=False)

答案 1 :(得分:1)

我建议您使用scikit-learn作为我的评论中提到的目的。

示例1

from sklearn import metrics

results = metrics.accuracy_score(real_y, predicted_y)

您还可以获取包含precisionrecallf1-scores的分类报告。

示例2:

from sklearn.metrics import classification_report

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))

                precision    recall  f1-score   support

    class 0       0.50      1.00      0.67         1
    class 1       0.00      0.00      0.00         1
    class 2       1.00      0.67      0.80         3

avg / total       0.70      0.60      0.61         5

最后,对于混淆矩阵,请使用:

示例3:

from sklearn.metrics import confusion_matrix

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]

confusion_matrix(y_true, y_pred)

array([[1, 0, 0],
       [1, 0, 0],
       [0, 1, 2]])

答案 2 :(得分:0)

感谢seralouk,我发现:

from sklearn import metrics
metrics.accuracy_score(real_y.argmax(axis=1), predicted_y.argmax(axis=1))

答案 3 :(得分:0)

I wrote a Python lib for confusion matrix analysis, you can use it for your purpose.


    >>> from pycm import *
    >>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] # or y_actu = numpy.array([2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2])
    >>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] # or y_pred = numpy.array([0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2])
    >>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) # Create CM From Data
    >>> cm.classes
    [0, 1, 2]
    >>> cm.table
    {0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
    >>> print(cm)
    Predict          0        1        2        
    Actual
    0                3        0        0        
    1                0        1        2        
    2                2        1        3        




    Overall Statistics : 

    95% CI                                                           (0.30439,0.86228)
    Bennett_S                                                        0.375
    Chi-Squared                                                      6.6
    Chi-Squared DF                                                   4
    Conditional Entropy                                              0.95915
    Cramer_V                                                         0.5244
    Cross Entropy                                                    1.59352
    Gwet_AC1                                                         0.38931
    Joint Entropy                                                    2.45915
    KL Divergence                                                    0.09352
    Kappa                                                            0.35484
    Kappa 95% CI                                                     (-0.07708,0.78675)
    Kappa No Prevalence                                              0.16667
    Kappa Standard Error                                             0.22036
    Kappa Unbiased                                                   0.34426
    Lambda A                                                         0.16667
    Lambda B                                                         0.42857
    Mutual Information                                               0.52421
    Overall_ACC                                                      0.58333
    Overall_RACC                                                     0.35417
    Overall_RACCU                                                    0.36458
    PPV_Macro                                                        0.56667
    PPV_Micro                                                        0.58333
    Phi-Squared                                                      0.55
    Reference Entropy                                                1.5
    Response Entropy                                                 1.48336
    Scott_PI                                                         0.34426
    Standard Error                                                   0.14232
    Strength_Of_Agreement(Altman)                                    Fair
    Strength_Of_Agreement(Cicchetti)                                 Poor
    Strength_Of_Agreement(Fleiss)                                    Poor
    Strength_Of_Agreement(Landis and Koch)                           Fair
    TPR_Macro                                                        0.61111
    TPR_Micro                                                        0.58333

    Class Statistics :

    Classes                                                          0                       1                       2                       
    ACC(Accuracy)                                                    0.83333                 0.75                    0.58333                 
    BM(Informedness or bookmaker informedness)                       0.77778                 0.22222                 0.16667                 
    DOR(Diagnostic odds ratio)                                       None                    4.0                     2.0                     
    ERR(Error rate)                                                  0.16667                 0.25                    0.41667                 
    F0.5(F0.5 score)                                                 0.65217                 0.45455                 0.57692                 
    F1(F1 score - harmonic mean of precision and sensitivity)        0.75                    0.4                     0.54545                 
    F2(F2 score)                                                     0.88235                 0.35714                 0.51724                 
    FDR(False discovery rate)                                        0.4                     0.5                     0.4                     
    FN(False negative/miss/type 2 error)                             0                       2                       3                       
    FNR(Miss rate or false negative rate)                            0.0                     0.66667                 0.5                     
    FOR(False omission rate)                                         0.0                     0.2                     0.42857                 
    FP(False positive/type 1 error/false alarm)                      2                       1                       2                       
    FPR(Fall-out or false positive rate)                             0.22222                 0.11111                 0.33333                 
    G(G-measure geometric mean of precision and sensitivity)         0.7746                  0.40825                 0.54772                 
    LR+(Positive likelihood ratio)                                   4.5                     3.0                     1.5                     
    LR-(Negative likelihood ratio)                                   0.0                     0.75                    0.75                    
    MCC(Matthews correlation coefficient)                            0.68313                 0.2582                  0.16903                 
    MK(Markedness)                                                   0.6                     0.3                     0.17143                 
    N(Condition negative)                                            9                       9                       6                       
    NPV(Negative predictive value)                                   1.0                     0.8                     0.57143                 
    P(Condition positive)                                            3                       3                       6                       
    POP(Population)                                                  12                      12                      12                      
    PPV(Precision or positive predictive value)                      0.6                     0.5                     0.6                     
    PRE(Prevalence)                                                  0.25                    0.25                    0.5                     
    RACC(Random accuracy)                                            0.10417                 0.04167                 0.20833                 
    RACCU(Random accuracy unbiased)                                  0.11111                 0.0434                  0.21007                 
    TN(True negative/correct rejection)                              7                       8                       4                       
    TNR(Specificity or true negative rate)                           0.77778                 0.88889                 0.66667                 
    TON(Test outcome negative)                                       7                       10                      7                       
    TOP(Test outcome positive)                                       5                       2                       5                       
    TP(True positive/hit)                                            3                       1                       3                       
    TPR(Sensitivity, recall, hit rate, or true positive rate)        1.0                     0.33333                 0.5  

    >>> cm.matrix()
    Predict          0        1        2        
    Actual
    0                3        0        0        
    1                0        1        2        
    2                2        1        3        

    >>> cm.normalized_matrix()
    Predict          0              1              2              
    Actual
    0                1.0            0.0            0.0            
    1                0.0            0.33333        0.66667        
    2                0.33333        0.16667        0.5            

Link : PyCM