从R中的列表中提取SMD

时间:2018-05-25 07:23:19

标签: r list

它只花了最后几个小时试图编写一个函数来巧妙地提取大型列表的特定值。 该列表是Matching-package中MatchBalance-function的结果。 (如下所示)

dput(match_balance)
list(BeforeMatching = list(structure(list(sdiff = 22.2584906974256, 
    sdiff.pooled = 21.4958513408818, mean.Tr = 0.698535745047373, 
    mean.Co = 0.596348884381339, var.Tr = 0.210765095488431, 
    var.Co = 0.241206154455054, p.value = 8.60322780498191e-05, 
    var.ratio = 0.873796508072539, tt = list(statistic = 3.94546943651756, 
        parameter = Inf, p.value = 8.60322780498191e-05, estimate = 0.102186860666034), 
    qqsummary = list(meandiff = 0.0510934303330171, mediandiff = 0.0510934303330171, 
        maxdiff = 0.102186860666034), qqsummary.raw = list(meandiff = 0.101419878296146, 
        mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 5.3973084293699, sdiff.pooled = 5.92345489633794, 
        mean.Tr = 8.08527131782946, mean.Co = 7.81947261663286, 
        var.Tr = 24.2522052927025, var.Co = 16.0181566318706, 
        p.value = 0.250207681820269, var.ratio = 1.51404470876811, 
        ks = list(ks = list(p.value = 0.114246870617229, statistic = 0.064309462535794), 
            ks.boot.pvalue = 0.036), tt = list(statistic = 1.15043617596334, 
            parameter = Inf, p.value = 0.250207681820269, estimate = 0.265798701196598), 
        qqsummary = list(meandiff = 0.0204640823995788, mediandiff = 0.0135733167008227, 
            maxdiff = 0.0643094625357939), qqsummary.raw = list(
            meandiff = 0.72210953346856, mediandiff = 0, maxdiff = 10)), class = "balanceUV"), 
    structure(list(sdiff = 12.2671863050276, sdiff.pooled = 12.5477798990104, 
        mean.Tr = 0.354866494401378, mean.Co = 0.296146044624746, 
        var.Tr = 0.229133624402269, var.Co = 0.208867230660136, 
        p.value = 0.0186553005651673, var.ratio = 1.09703003040774, 
        tt = list(statistic = 2.35632374880165, parameter = Inf, 
            p.value = 0.0186553005651673, estimate = 0.0587204497766317), 
        qqsummary = list(meandiff = 0.0293602248883158, mediandiff = 0.0293602248883158, 
            maxdiff = 0.0587204497766316), qqsummary.raw = list(
            meandiff = 0.0588235294117647, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = -4.35451566570258, sdiff.pooled = -4.27827299751805, 
        mean.Tr = 0.180017226528854, mean.Co = 0.196754563894523, 
        var.Tr = 0.14773827556506, var.Co = 0.15836342947608, 
        p.value = 0.429534065280635, var.ratio = 0.93290651796206, 
        tt = list(statistic = -0.790346091204352, parameter = Inf, 
            p.value = 0.429534065280635, estimate = -0.0167373373656689), 
        qqsummary = list(meandiff = 0.00836866868283442, mediandiff = 0.00836866868283442, 
            maxdiff = 0.0167373373656688), qqsummary.raw = list(
            meandiff = 0.0162271805273834, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 39.9822573084269, sdiff.pooled = 36.6629816770573, 
        mean.Tr = 0.7786391042205, mean.Co = 0.612576064908722, 
        var.Tr = 0.172508836021266, var.Co = 0.237809000808061, 
        p.value = 6.92215174069588e-11, var.ratio = 0.725409195762528, 
        tt = list(statistic = 6.61108722554289, parameter = Inf, 
            p.value = 6.92215174069588e-11, estimate = 0.166063039311777), 
        qqsummary = list(meandiff = 0.0830315196558887, mediandiff = 0.0830315196558887, 
            maxdiff = 0.166063039311777), qqsummary.raw = list(
            meandiff = 0.164300202839757, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 12.597525525777, sdiff.pooled = 13.5632307793938, 
        mean.Tr = 0.141257536606374, mean.Co = 0.0973630831643002, 
        var.Tr = 0.121408417238409, var.Co = 0.0880621382278731, 
        p.value = 0.00922374798002057, var.ratio = 1.37866760541571, 
        tt = list(statistic = 2.60834531296045, parameter = Inf, 
            p.value = 0.00922374798002057, estimate = 0.0438944534420736), 
        qqsummary = list(meandiff = 0.0219472267210368, mediandiff = 0.0219472267210368, 
            maxdiff = 0.0438944534420737), qqsummary.raw = list(
            meandiff = 0.0446247464503043, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 21.7153523183508, sdiff.pooled = 28.3845616356215, 
        mean.Tr = 0.0628768303186908, mean.Co = 0.0101419878296146, 
        var.Tr = 0.0589741305058065, var.Co = 0.010059532644008, 
        p.value = 5.2243853687628e-10, var.ratio = 5.86251196678951, 
        tt = list(statistic = 6.24964706630044, parameter = Inf, 
            p.value = 5.2243853687628e-10, estimate = 0.0527348424890762), 
        qqsummary = list(meandiff = 0.0263674212445381, mediandiff = 0.0263674212445381, 
            maxdiff = 0.0527348424890761), qqsummary.raw = list(
            meandiff = 0.0527383367139959, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = -39.0787955789784, sdiff.pooled = -47.8011511924565, 
        mean.Tr = 0.773471145564169, mean.Co = 0.937119675456389, 
        var.Tr = 0.175364578692566, var.Co = 0.0590461584129026, 
        p.value = 0, var.ratio = 2.9699574605051, tt = list(statistic = -9.94433082519833, 
            parameter = Inf, p.value = 0, estimate = -0.163648529892221), 
        qqsummary = list(meandiff = 0.0818242649461103, mediandiff = 0.0818242649461103, 
            maxdiff = 0.163648529892221), qqsummary.raw = list(
            meandiff = 0.164300202839757, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = -3.98851571987444, sdiff.pooled = -3.98818429650864, 
        mean.Tr = 0.49526270456503, mean.Co = 0.515212981744422, 
        var.Tr = 0.250193055926817, var.Co = 0.250276224871782, 
        p.value = 0.458349108088805, var.ratio = 0.999667691387754, 
        tt = list(statistic = -0.741877948762809, parameter = Inf, 
            p.value = 0.458349108088805, estimate = -0.0199502771793917), 
        qqsummary = list(meandiff = 0.00997513858969587, mediandiff = 0.00997513858969587, 
            maxdiff = 0.0199502771793917), qqsummary.raw = list(
            meandiff = 0.0202839756592292, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 12.5540247631196, sdiff.pooled = 14.0760164750664, 
        mean.Tr = 0.078380706287683, mean.Co = 0.0446247464503043, 
        var.Tr = 0.072299444592949, var.Co = 0.0427200316627913, 
        p.value = 0.00576113754555174, var.ratio = 1.69240147487815, 
        tt = list(statistic = 2.76607707952665, parameter = Inf, 
            p.value = 0.00576113754555174, estimate = 0.0337559598373788), 
        qqsummary = list(meandiff = 0.0168779799186894, mediandiff = 0.0168779799186894, 
            maxdiff = 0.0337559598373788), qqsummary.raw = list(
            meandiff = 0.0344827586206897, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = 13.3315397848797, sdiff.pooled = 13.7265855346641, 
        mean.Tr = 0.507957655455033, mean.Co = 0.472143828112388, 
        var.Tr = 0.0721673644211338, var.Co = 0.0639791181344331, 
        p.value = 0.0098790313533379, var.ratio = 1.12798310644882, 
        ks = list(ks = list(p.value = 0.00266655156614348, statistic = 0.0978016083917306), 
            ks.boot.pvalue = 0.001), tt = list(statistic = 2.58507967777527, 
            parameter = Inf, p.value = 0.0098790313533379, estimate = 0.0358138273426449), 
        qqsummary = list(meandiff = 0.0499856602385024, mediandiff = 0.0440420844449337, 
            maxdiff = 0.0978016083917306), qqsummary.raw = list(
            meandiff = 0.0442845670492144, mediandiff = 0.0476190476190476, 
            maxdiff = 0.142857142857143)), class = "balanceUV"), 
    structure(list(sdiff = 4.87227042076281, sdiff.pooled = 4.98405738715444, 
        mean.Tr = 0.278638322937648, mean.Co = 0.265922140872028, 
        var.Tr = 0.0681162460692791, var.Co = 0.0620736864689898, 
        p.value = 0.349519842043573, var.ratio = 1.09734494508084, 
        ks = list(ks = list(p.value = 0.506111511162152, statistic = 0.0442788181832476), 
            ks.boot.pvalue = 0.353), tt = list(statistic = 0.93597424972811, 
            parameter = Inf, p.value = 0.349519842043573, estimate = 0.0127161820656209), 
        qqsummary = list(meandiff = 0.0218282465977588, mediandiff = 0.0213322431351584, 
            maxdiff = 0.0442788181832476), qqsummary.raw = list(
            meandiff = 0.0189052460056224, mediandiff = 0.00476190476190477, 
            maxdiff = 0.1)), class = "balanceUV"), structure(list(
        sdiff = 50.8455723559418, sdiff.pooled = 57.1984691101715, 
        mean.Tr = 12.4720068906115, mean.Co = 7.18255578093306, 
        var.Tr = 108.221845020642, var.Co = 62.8121341051139, 
        p.value = 0, var.ratio = 1.7229448825849, ks = list(ks = list(
            p.value = 0, statistic = 0.283000770476595), ks.boot.pvalue = 0), 
        tt = list(statistic = 11.2612315121661, parameter = Inf, 
            p.value = 0, estimate = 5.28945110967848), qqsummary = list(
            meandiff = 0.120195222346267, mediandiff = 0.123624804105015, 
            maxdiff = 0.283000770476595), qqsummary.raw = list(
            meandiff = 5.28600405679513, mediandiff = 5, maxdiff = 12)), class = "balanceUV"), 
    structure(list(sdiff = -149.790452098093, sdiff.pooled = -98.4174509729638, 
        mean.Tr = 0.0740740740740741, mean.Co = 0.466531440162272, 
        var.Tr = 0.0686462324393359, var.Co = 0.249385708867231, 
        p.value = 0, var.ratio = 0.275261292040925, tt = list(
            statistic = -16.51109508659, parameter = Inf, p.value = 0, 
            estimate = -0.392457366088198), qqsummary = list(
            meandiff = 0.196228683044099, mediandiff = 0.196228683044099, 
            maxdiff = 0.392457366088198), qqsummary.raw = list(
            meandiff = 0.391480730223124, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
    structure(list(sdiff = -2.25163812152155, sdiff.pooled = -2.24203587782247, 
        mean.Tr = 0.328165374677003, mean.Co = 0.338742393509128, 
        var.Tr = 0.220662924351778, var.Co = 0.224451260739788, 
        p.value = 0.677243477403197, var.ratio = 0.983121786103923, 
        tt = list(statistic = -0.416360243198386, parameter = Inf, 
            p.value = 0.677243477403197, estimate = -0.0105770188321252), 
        qqsummary = list(meandiff = 0.00528850941606263, mediandiff = 0.00528850941606263, 
            maxdiff = 0.0105770188321253), qqsummary.raw = list(
            meandiff = 0.0101419878296146, mediandiff = 0, maxdiff = 1)), class = "balanceUV")), 
    AfterMatching = list(structure(list(sdiff = 5.62846137589845, 
        sdiff.pooled = 5.62846137589845, mean.Tr = 0.698535745047373, 
        mean.Co = 0.672695951765719, var.Tr = 0.210583557938485, 
        var.Co = 0.220176108243732, p.value = 0.0646992301558937, 
        var.ratio = 0.956432374149201, tt = list(statistic = 1.84908913783282, 
            parameter = Inf, p.value = 0.0646992301558937, estimate = 0.0258397932816537), 
        qqsummary = list(meandiff = 0.0129198966408269, mediandiff = 0.0129198966408269, 
            maxdiff = 0.0258397932816538), qqsummary.raw = list(
            meandiff = 0.0258397932816537, mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
        structure(list(sdiff = 4.16264255174112, sdiff.pooled = 4.16264255174112, 
            mean.Tr = 8.08527131782946, mean.Co = 7.88027562446167, 
            var.Tr = 24.2313162269896, var.Co = 19.1234783047374, 
            p.value = 0.0298269273944689, var.ratio = 1.26709774450325, 
            ks = list(ks = list(p.value = 0.147671007224485, 
                statistic = 0.0473729543496985), ks.boot.pvalue = 0.046), 
            tt = list(statistic = 2.17506198797969, parameter = Inf, 
                p.value = 0.0298269273944689, estimate = 0.204995693367786), 
            qqsummary = list(meandiff = 0.0135985174744865, mediandiff = 0.00775193798449603, 
                maxdiff = 0.0473729543496986), qqsummary.raw = list(
                meandiff = 0.463393626184324, mediandiff = 0, 
                maxdiff = 18)), class = "balanceUV"), structure(list(
            sdiff = 3.77870216649659, sdiff.pooled = 3.77870216649659, 
            mean.Tr = 0.354866494401378, mean.Co = 0.336778639104221, 
            var.Tr = 0.228936265552655, var.Co = 0.22335878734733, 
            p.value = 0.000751164709090091, var.ratio = 1.0249709369914, 
            tt = list(statistic = 3.37918748651929, parameter = Inf, 
                p.value = 0.000751164709090091, estimate = 0.0180878552971576), 
            qqsummary = list(meandiff = 0.00904392764857881, 
                mediandiff = 0.00904392764857881, maxdiff = 0.0180878552971576), 
            qqsummary.raw = list(meandiff = 0.0180878552971576, 
                mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
        structure(list(sdiff = 1.79271500892808, sdiff.pooled = 1.79271500892808, 
            mean.Tr = 0.180017226528854, mean.Co = 0.17312661498708, 
            var.Tr = 0.147611024681714, var.Co = 0.143153790170195, 
            p.value = 0.0453608072305189, var.ratio = 1.031135986733, 
            tt = list(statistic = 2.00345423400722, parameter = Inf, 
                p.value = 0.0453608072305189, estimate = 0.00689061154177433), 
            qqsummary = list(meandiff = 0.00344530577088714, 
                mediandiff = 0.00344530577088714, maxdiff = 0.00689061154177428), 
            qqsummary.raw = list(meandiff = 0.00689061154177433, 
                mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
        structure(list(sdiff = 0, sdiff.pooled = 0, mean.Tr = 0.7786391042205, 
            mean.Co = 0.7786391042205, var.Tr = 0.172360249599198, 
            var.Co = 0.172360249599198, p.value = 1, var.ratio = 1, 
            tt = list(statistic = 0, parameter = Inf, p.value = 1, 
                estimate = 0), qqsummary = list(meandiff = 0, 
                mediandiff = 0, maxdiff = 0), qqsummary.raw = list(
                meandiff = 0, mediandiff = 0, maxdiff = 0)), class = "balanceUV"), 
        structure(list(sdiff = 0.988788422895726, sdiff.pooled = 0.988788422895726, 
            mean.Tr = 0.141257536606374, mean.Co = 0.137812230835487, 
            var.Tr = 0.121303844958273, var.Co = 0.118820019867633, 
            p.value = 0.0453608072305187, var.ratio = 1.0209040959041, 
            tt = list(statistic = 2.00345423400722, parameter = Inf, 
                p.value = 0.0453608072305187, estimate = 0.00344530577088717), 
            qqsummary = list(meandiff = 0.0017226528854436, mediandiff = 0.0017226528854436, 
                maxdiff = 0.0034453057708872), qqsummary.raw = list(
                meandiff = 0.00344530577088717, mediandiff = 0, 
                maxdiff = 1)), class = "balanceUV"), structure(list(
            sdiff = 0, sdiff.pooled = 0, mean.Tr = 0.0628768303186908, 
            mean.Co = 0.0628768303186908, var.Tr = 0.0589233345277653, 
            var.Co = 0.0589233345277653, p.value = 1, var.ratio = 1, 
            tt = list(statistic = 0, parameter = Inf, p.value = 1, 
                estimate = 0), qqsummary = list(meandiff = 0, 
                mediandiff = 0, maxdiff = 0), qqsummary.raw = list(
                meandiff = 0, mediandiff = 0, maxdiff = 0)), class = "balanceUV"), 
        structure(list(sdiff = 1.23409357862471, sdiff.pooled = 1.23409357862471, 
            mean.Tr = 0.773471145564169, mean.Co = 0.768303186907838, 
            var.Tr = 0.175213532543821, var.Co = 0.178013399895098, 
            p.value = 0.0142012433926924, var.ratio = 0.984271592178305, 
            tt = list(statistic = 2.45584381245405, parameter = Inf, 
                p.value = 0.0142012433926924, estimate = 0.00516795865633075), 
            qqsummary = list(meandiff = 0.00258397932816537, 
                mediandiff = 0.00258397932816537, maxdiff = 0.00516795865633074), 
            qqsummary.raw = list(meandiff = 0.00516795865633075, 
                mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
        structure(list(sdiff = -2.41078338721197, sdiff.pooled = -2.41078338721197, 
            mean.Tr = 0.49526270456503, mean.Co = 0.507321274763135, 
            var.Tr = 0.249977558031962, var.Co = 0.249946398935843, 
            p.value = 0.439549902808192, var.ratio = 1.00012466311278, 
            tt = list(statistic = -0.773219694316945, parameter = Inf, 
                p.value = 0.439549902808192, estimate = -0.0120585701981051), 
            qqsummary = list(meandiff = 0.00602928509905251, 
                mediandiff = 0.00602928509905251, maxdiff = 0.012058570198105), 
            qqsummary.raw = list(meandiff = 0.0120585701981051, 
                mediandiff = 0, maxdiff = 1)), class = "balanceUV"), 
        structure(list(sdiff = 9.930291416322, sdiff.pooled = 9.930291416322, 
            mean.Tr = 0.078380706287683, mean.Co = 0.0516795865633075, 
            var.Tr = 0.072237171169527, var.Co = 0.0490088068959531, 
            p.value = 1.91987685069783e-05, var.ratio = 1.47396306388132, 
            tt = list(statistic = 4.29182343516133, parameter = Inf, 
                p.value = 1.91987685069783e-05, estimate = 0.0267011197243755), 
            qqsummary = list(meandiff = 0.0133505598621877, mediandiff = 0.0133505598621877, 
                maxdiff = 0.0267011197243755), qqsummary.raw = list(
                meandiff = 0.0267011197243755, mediandiff = 0, 
                maxdiff = 1)), class = "balanceUV"), structure(list(
            sdiff = 3.43987547209015, sdiff.pooled = 3.43987547209015, 
            mean.Tr = 0.507957655455033, mean.Co = 0.498716779440294, 
            var.Tr = 0.0721052047618564, var.Co = 0.0558416070884326, 
            p.value = 0.147042640388033, var.ratio = 1.29124515789218, 
            ks = list(ks = list(p.value = 0.000104306251282216, 
                statistic = 0.0921619293712317), ks.boot.pvalue = 0), 
            tt = list(statistic = 1.45102722479205, parameter = Inf, 
                p.value = 0.147042640388033, estimate = 0.00924087601473921), 
            qqsummary = list(meandiff = 0.0266073118939801, mediandiff = 0.0206718346253231, 
                maxdiff = 0.0921619293712318), qqsummary.raw = list(
                meandiff = 0.0289282207814133, mediandiff = 0, 
                maxdiff = 0.2)), class = "balanceUV"), structure(list(
            sdiff = 9.10109642166626, sdiff.pooled = 9.10109642166626, 
            mean.Tr = 0.278638322937648, mean.Co = 0.254885290141788, 
            var.Tr = 0.0680575757453607, var.Co = 0.0560004220033455, 
            p.value = 1.00565747906955e-06, var.ratio = 1.21530469433418, 
            ks = list(ks = list(p.value = 0.000305596833701904, 
                statistic = 0.0869939707149009), ks.boot.pvalue = 0), 
            tt = list(statistic = 4.91691414265496, parameter = Inf, 
                p.value = 1.00565747906955e-06, estimate = 0.0237530327958603), 
            qqsummary = list(meandiff = 0.0314248152681445, mediandiff = 0.0267011197243756, 
                maxdiff = 0.086993970714901), qqsummary.raw = list(
                meandiff = 0.0300438995760228, mediandiff = 0.0166666666666667, 
                maxdiff = 0.25)), class = "balanceUV"), structure(list(
            sdiff = 25.6005796438011, sdiff.pooled = 25.6005796438011, 
            mean.Tr = 12.4720068906115, mean.Co = 9.80878552971576, 
            var.Tr = 108.128630683846, var.Co = 88.5301898256649, 
            p.value = 0, var.ratio = 1.22137579165677, ks = list(
                ks = list(p.value = 3.24185123190546e-14, statistic = 0.165374677002584), 
                ks.boot.pvalue = 0), tt = list(statistic = 13.1779461905435, 
                parameter = Inf, p.value = 0, estimate = 2.66322136089578), 
            qqsummary = list(meandiff = 0.0610562994283924, mediandiff = 0.0486649440137812, 
                maxdiff = 0.165374677002584), qqsummary.raw = list(
                meandiff = 2.68733850129199, mediandiff = 3, 
                maxdiff = 8)), class = "balanceUV"), structure(list(
            sdiff = 0, sdiff.pooled = 0, mean.Tr = 0.0740740740740741, 
            mean.Co = 0.0740740740740741, var.Tr = 0.0685871056241427, 
            var.Co = 0.0685871056241427, p.value = 1, var.ratio = 1, 
            tt = list(statistic = 0, parameter = Inf, p.value = 1, 
                estimate = 0), qqsummary = list(meandiff = 0, 
                mediandiff = 0, maxdiff = 0), qqsummary.raw = list(
                meandiff = 0, mediandiff = 0, maxdiff = 0)), class = "balanceUV"), 
        structure(list(sdiff = 0, sdiff.pooled = 0, mean.Tr = 0.328165374677003, 
            mean.Co = 0.328165374677003, var.Tr = 0.220472861540105, 
            var.Co = 0.220472861540105, p.value = 1, var.ratio = 1, 
            tt = list(statistic = 0, parameter = Inf, p.value = 1, 
                estimate = 0), qqsummary = list(meandiff = 0, 
                mediandiff = 0, maxdiff = 0), qqsummary.raw = list(
                meandiff = 0, mediandiff = 0, maxdiff = 0)), class = "balanceUV")), 
    BMsmallest.p.value = 0, BMsmallestVarName = c("RForm3", "F06A", 
    "VERSION2"), BMsmallestVarNumber = c(8, 13, 14), AMsmallest.p.value = 0, 
    AMsmallestVarName = c("C06A_ratio", "C06B_ratio", "F06A"), 
    AMsmallestVarNumber = c(11, 12, 13))

我想为每个变量(这里是n = 15)提取SMD('sdiff')和列表中的p.value“BeforeMatching”以及“AfterMatching”

我尝试写这个函数:

SMDeepExtract <- function(data) {
  data = data
  n = 1:(max(length(data[['BeforeMatching']])))

  for (i in n) {
    SMD_bef <- rbind(data[['BeforeMatching']][[i]][['sdiff']])
    p.value_bef <- rbind(data[['BeforeMatching']][[i]][['p.value']])
    SMD_aft <- rbind(data[['AfterMatching']][[i]][['sdiff']])
    p.value_aft <- rbind(data[['AfterMatching']][[i]][['p.value']])
  }

    final <- cbind(SMD_bef, p.value_bef, SMD_aft, p.value_aft)

    return(final)


}

SMDeepExtract(match_balance)

> SMDeepExtract(match_balance)
          [,1]      [,2] [,3] [,4]
[1,] -2.251638 0.6772435    0    1

看来,我的代码只粘贴了最后一个变量n15的结果而不是全部 - 有没有人看到我的错误?

谢谢!

1 个答案:

答案 0 :(得分:0)

使用 sapply 而不是for循环:

<?php
$name = $_GET['name'];
$action = empty($_GET['action'])?'':$_GET['action'];
if(empty($name)){
exit('No data');
}
require_once("../winphplib/kernel.php");
require_once ('../winphplib/dbconnect_egen.php');

if($action=='get_name'){
    $sqlquery = "SELECT rt_name FROM reg_ticket WHERE rt_name LIKE '%$name%' LIMIT 15";
    $result = mysql_query($sqlquery) or die(mysql_error());
    while($myrow = MySQL_fetch_array($result)){
        $data[] = strtoupper($myrow['rt_name']);
    }
}elseif($action=='get_fulldata') {
$sqlquery = "SELECT * FROM reg_ticket WHERE rt_name = '$name' LIMIT 1";
$result = mysql_query($sqlquery) or die(mysql_error());
$data = mysql_fetch_assoc($result);
if(count($data)>0){
    list($data['mobile1'], $data['mobile2']) = explode("-", $data['rt_contact']);
    list($data['tf1'], $data['tf2'], $data['tf3']) = explode("-", $data['rt_ic']);
}

}
mysql_free_result($result); 
echo json_encode($data);