我有一个具有以下结构的数据框:
# A tibble: 95 x 7
# Groups: WallReg_2p5 [19]
CellID_2p5 Y_Coord_2p5Weighting WallReg_2p5 piC_1 piC_2 piC_3 piC_4
<int> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 6561 0.915 African 6.55 6.63 5.84 0.766
2 6278 0.947 African 15.1 5.59 2.15 2.01
3 4394 0.971 African 11.4 3.92 0.774 1.47
4 4840 0.994 African 4.70 0.962 6.21 3.54
5 4105 0.947 African 6.35 2.10 2.25 3.24
6 5228 1.000 Amazonian 8.49 5.00 1.92 2.42
7 5089 1.000 Amazonian 15.6 6.48 2.53 2.89
8 4939 0.998 Amazonian 5.56 2.94 0.389 2.44
9 5088 1.000 Amazonian 12.9 5.16 1.99 3.13
10 4947 0.998 Amazonian 8.05 11.2 2.54 4.61
# ... with 85 more rows
以下是数据框子集的dput()
。我的真实数据集包含10,368行和255,611列
structure(list(CellID_2p5 = c(6561L, 6278L, 4394L, 4840L, 4105L,
5228L, 5089L, 4939L, 5088L, 4947L, 1710L, 2569L, 1438L, 1175L,
1840L, 6888L, 7185L, 6031L, 7045L, 7044L, 3432L, 3288L, 3143L,
3574L, 3577L, 3260L, 1959L, 2568L, 2986L, 2386L, 5551L, 5407L,
5556L, 4979L, 5694L, 5303L, 4442L, 5587L, 5157L, 4865L, 3294L,
3009L, 2865L, 2722L, 3151L, 6427L, 6571L, 5996L, 6570L, 6139L,
3631L, 3920L, 3342L, 3341L, 4064L, 2617L, 2049L, 3346L, 1599L,
3205L, 7487L, 6612L, 6613L, 7630L, 7916L, 3854L, 3561L, 4290L,
4138L, 3704L, 4211L, 4068L, 4069L, 4357L, 4648L, 5601L, 5600L,
5455L, 5456L, 5458L, 3978L, 3822L, 3532L, 3832L, 3834L, 7105L,
6817L, 6104L, 7963L, 6098L, 3418L, 3424L, 3281L, 3566L, 3273L
), Y_Coord_2p5Weighting = c(0.915311479119447, 0.946930129495106,
0.971342069813261, 0.99405633822232, 0.946930129495106, 0.999762027079909,
0.999762027079909, 0.997858923238603, 0.999762027079909, 0.997858923238603,
0.480988768919388, 0.691513055782269, 0.402746689858737, 0.362438038283702,
0.518773258160522, 0.876726755707508, 0.831469612302545, 0.971342069813261,
0.854911870672947, 0.854911870672947, 0.854911870672947, 0.831469612302545,
0.806444604267483, 0.876726755707508, 0.876726755707508, 0.831469612302545,
0.555570233019602, 0.691513055782269, 0.779884483092882, 0.659345815100069,
0.99405633822232, 0.997858923238603, 0.99405633822232, 0.997858923238603,
0.988361510467761, 0.999762027079909, 0.971342069813261, 0.99405633822232,
0.999762027079909, 0.99405633822232, 0.831469612302545, 0.779884483092882,
0.751839807478977, 0.722363962059756, 0.806444604267483, 0.932007869282799,
0.915311479119447, 0.971342069813261, 0.915311479119447, 0.960049854385929,
0.896872741532688, 0.932007869282799, 0.854911870672947, 0.854911870672947,
0.946930129495106, 0.722363962059756, 0.591309648363582, 0.854911870672947,
0.480988768919388, 0.831469612302545, 0.779884483092882, 0.915311479119447,
0.915311479119447, 0.751839807478977, 0.691513055782269, 0.915311479119447,
0.876726755707508, 0.960049854385929, 0.946930129495106, 0.896872741532688,
0.960049854385929, 0.946930129495106, 0.946930129495106, 0.971342069813261,
0.988361510467761, 0.99405633822232, 0.99405633822232, 0.997858923238603,
0.997858923238603, 0.997858923238603, 0.932007869282799, 0.915311479119447,
0.876726755707508, 0.915311479119447, 0.915311479119447, 0.831469612302545,
0.876726755707508, 0.960049854385929, 0.659345815100069, 0.960049854385929,
0.854911870672947, 0.854911870672947, 0.831469612302545, 0.876726755707508,
0.831469612302545), WallReg_2p5 = c("African", "African", "African",
"African", "African", "Amazonian", "Amazonian", "Amazonian",
"Amazonian", "Amazonian", "Arctico-Siberian", "Arctico-Siberian",
"Arctico-Siberian", "Arctico-Siberian", "Arctico-Siberian", "Australian",
"Australian", "Australian", "Australian", "Australian", "Chinese",
"Chinese", "Chinese", "Chinese", "Chinese", "Eurasian", "Eurasian",
"Eurasian", "Eurasian", "Eurasian", "Guineo-Congolian", "Guineo-Congolian",
"Guineo-Congolian", "Guineo-Congolian", "Guineo-Congolian", "Indo-Malayan",
"Indo-Malayan", "Indo-Malayan", "Indo-Malayan", "Indo-Malayan",
"Japanese", "Japanese", "Japanese", "Japanese", "Japanese", "Madagascan",
"Madagascan", "Madagascan", "Madagascan", "Madagascan", "Mexican",
"Mexican", "Mexican", "Mexican", "Mexican", "North American",
"North American", "North American", "North American", "North American",
"Novozelandic", "Novozelandic", "Novozelandic", "Novozelandic",
"Novozelandic", "Oriental", "Oriental", "Oriental", "Oriental",
"Oriental", "Panamanian", "Panamanian", "Panamanian", "Panamanian",
"Panamanian", "Papua-Melanesian", "Papua-Melanesian", "Papua-Melanesian",
"Papua-Melanesian", "Papua-Melanesian", "Saharo-Arabian", "Saharo-Arabian",
"Saharo-Arabian", "Saharo-Arabian", "Saharo-Arabian", "South American",
"South American", "South American", "South American", "South American",
"Tibetan", "Tibetan", "Tibetan", "Tibetan", "Tibetan"), piC_1 = c(6.54637718200684,
15.1273813247681, 11.4171981811523, 4.70245027542114, 6.35227298736572,
8.48885822296143, 15.5538415908813, 5.56155681610107, 12.9046697616577,
8.04517650604248, 2.95071268081665, 21.6441345214844, 11.2329692840576,
16.1649322509766, 17.2905006408691, 3.43583130836487, 10.0594062805176,
12.3438568115234, 7.94222640991211, 6.89916276931763, 7.45456171035767,
8.77329444885254, 14.3378238677979, 3.86588025093079, 12.4889860153198,
7.18962049484253, 19.2145137786865, 22.0060653686523, 1.86285281181335,
2.09195709228516, 9.87592029571533, 12.2629871368408, 7.31402492523193,
0.601671099662781, 6.9998254776001, 20.6269207000732, 6.21515369415283,
22.039529800415, 8.35955047607422, 9.50113105773926, 7.06818675994873,
4.63532447814941, 5.81412315368652, 0.996474027633667, 8.32744407653809,
5.03945255279541, 0.893457889556885, 2.42736291885376, 10.3842725753784,
3.32475543022156, 8.1105375289917, 6.61336517333984, 4.06754541397095,
3.31069254875183, 8.05746650695801, 1.24714422225952, 6.44647121429443,
2.97141313552856, 13.3264999389648, 4.86157178878784, 6.71903085708618,
20.3318004608154, 20.8287792205811, 10.0042209625244, 12.7859420776367,
13.6358938217163, 15.9491415023804, 11.4823551177979, 18.6053276062012,
16.6047229766846, 16.1496143341064, 2.9492039680481, 13.8130388259888,
18.6300754547119, 14.464674949646, 4.92032289505005, 0.511945068836212,
3.16324853897095, 13.3062620162964, 9.84803581237793, 1.74625515937805,
2.54861640930176, 9.97869968414307, 11.2339553833008, 0.865878522396088,
14.7632684707642, 21.8330593109131, 6.42118740081787, 9.51691722869873,
13.2857227325439, 4.01672554016113, 10.9487056732178, 13.6308097839355,
4.69979858398438, 1.83490359783173), piC_2 = c(6.62732124328613,
5.59194660186768, 3.92186212539673, 0.962285339832306, 2.1002824306488,
4.99801731109619, 6.4822793006897, 2.94481801986694, 5.16082000732422,
11.2070302963257, 0.585842967033386, 4.83236265182495, 1.637331366539,
7.65087461471558, 2.28347945213318, 7.16115474700928, 3.54162955284119,
5.23653078079224, 2.28897953033447, 2.29887819290161, 0.752622723579407,
0.653791189193726, 1.5378258228302, 2.15203213691711, 1.64702248573303,
6.0682373046875, 0.22119003534317, 4.76900386810303, 0.366481363773346,
6.11435651779175, 10.8921070098877, 7.97591733932495, 6.05282688140869,
3.74584698677063, 5.75792741775513, 0.471727430820465, 2.75132250785828,
1.21862363815308, 0.138835281133652, 2.98711204528809, 0.627980709075928,
0.108154557645321, 0.995486855506897, 2.4163064956665, 0.0193456951528788,
5.70003795623779, 5.56746625900269, 2.9861011505127, 0.344279021024704,
0.640789806842804, 9.4457426071167, 7.05727958679199, 3.89853048324585,
0.340702921152115, 1.17963445186615, 8.93050575256348, 14.796028137207,
4.88054323196411, 9.28642845153809, 7.68382120132446, 2.27267980575562,
0.916118919849396, 0.689630210399628, 0.549197673797607, 1.68408465385437,
1.76007652282715, 3.2269868850708, 0.980833470821381, 5.00142002105713,
3.41616177558899, 6.74930334091187, 12.0952653884888, 15.2918863296509,
0.105648428201675, 4.59846162796021, 1.48986113071442, 5.02905178070068,
5.07208204269409, 4.98251914978027, 4.70810985565186, 2.37468719482422,
6.78730487823486, 6.18559217453003, 11.6090707778931, 2.91017484664917,
3.51590204238892, 3.35987615585327, 8.74919319152832, 2.23059439659119,
0.292922139167786, 5.41262531280518, 8.86936473846436, 8.20160961151123,
7.33296489715576, 8.42716407775879), piC_3 = c(5.84101867675781,
2.14856338500977, 0.774434208869934, 6.21446466445923, 2.25056719779968,
1.9200998544693, 2.52935075759888, 0.38894659280777, 1.98762917518616,
2.53701376914978, 6.93642854690552, 0.608367025852203, 4.7472562789917,
1.25435817241669, 4.09390258789062, 5.41882562637329, 0.221905186772346,
3.72868466377258, 0.763698220252991, 0.783569753170013, 8.32380294799805,
4.482017993927, 2.38237118721008, 10.7143220901489, 10.1253957748413,
4.51582384109497, 5.18871164321899, 1.76670265197754, 7.50785446166992,
6.2304630279541, 8.79040622711182, 7.47595691680908, 1.57976567745209,
1.46996772289276, 0.894773840904236, 1.30858862400055, 7.34649181365967,
1.41060519218445, 2.03947067260742, 4.6038031578064, 4.44245910644531,
0.236538723111153, 0.194929093122482, 0.684483885765076, 0.530747056007385,
1.89696133136749, 1.94861626625061, 3.36041831970215, 0.0835498198866844,
2.04665040969849, 7.02379274368286, 2.93551588058472, 5.33355855941772,
1.59516668319702, 2.19099020957947, 2.88170146942139, 7.42911052703857,
4.64155960083008, 2.24829292297363, 3.64715957641602, 0.363596022129059,
1.41882479190826, 0.474381387233734, 2.24125337600708, 4.11492681503296,
3.44695138931274, 3.08158445358276, 0.218709617853165, 2.44625425338745,
1.71628797054291, 1.75634157657623, 4.76044988632202, 0.387977868318558,
1.70636379718781, 1.70855867862701, 3.67641615867615, 0.744896650314331,
1.09648311138153, 1.37377882003784, 0.200171306729317, 1.4753475189209,
6.56762170791626, 7.72892284393311, 2.18395304679871, 0.481256455183029,
0.37385630607605, 4.25140476226807, 6.76727914810181, 4.81376981735229,
3.8882269859314, 2.90145373344421, 7.48540449142456, 9.90997123718262,
4.46362543106079, 5.19004011154175), piC_4 = c(0.765519082546234,
2.01459360122681, 1.4724348783493, 3.53503012657166, 3.23746180534363,
2.42439723014832, 2.89345812797546, 2.43676805496216, 3.13469624519348,
4.61154937744141, 4.51843070983887, 0.767921149730682, 5.01102733612061,
2.94891023635864, 5.20972728729248, 1.1311411857605, 2.22004199028015,
3.79573369026184, 0.551535904407501, 0.574182093143463, 5.87988710403442,
5.06349992752075, 3.72144675254822, 8.49415874481201, 4.27884483337402,
2.48057842254639, 4.45665884017944, 0.667030334472656, 6.93020153045654,
2.26927351951599, 1.5674192905426, 3.63813829421997, 2.73822736740112,
0.674351632595062, 1.89532685279846, 4.79139471054077, 1.34277474880219,
0.564522683620453, 3.33897042274475, 1.42253696918488, 2.7286331653595,
0.960368096828461, 2.00121903419495, 4.58775472640991, 2.11190366744995,
0.29313051700592, 0.0706640183925629, 2.87113666534424, 1.36242246627808,
3.57689785957336, 2.05132532119751, 0.340487778186798, 1.3506361246109,
0.400035679340363, 1.65728294849396, 5.17583227157593, 6.23331356048584,
1.60608506202698, 6.12336874008179, 0.46411395072937, 0.205161795020103,
1.93029391765594, 2.6833176612854, 0.199026927351952, 0.0609574876725674,
1.12770354747772, 1.49503016471863, 0.299944281578064, 0.302427768707275,
0.745285212993622, 2.91650176048279, 4.18865776062012, 2.71514081954956,
1.93356776237488, 1.67894613742828, 1.67655885219574, 3.09425163269043,
2.87126135826111, 2.42724895477295, 5.48751878738403, 3.4703311920166,
3.71456289291382, 4.29666662216187, 3.37810254096985, 3.07785415649414,
1.90873026847839, 3.57397627830505, 0.902793109416962, 3.96058869361877,
0.35958793759346, 2.9896719455719, 1.81924939155579, 4.22445392608643,
2.22684979438782, 4.53710412979126)), row.names = c(NA, -95L), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), .Names = c("CellID_2p5", "Y_Coord_2p5Weighting",
"WallReg_2p5", "piC_1", "piC_2", "piC_3", "piC_4"), vars = "WallReg_2p5", drop = TRUE, indices = list(
0:4, 5:9, 10:14, 15:19, 20:24, 25:29, 30:34, 35:39, 40:44,
45:49, 50:54, 55:59, 60:64, 65:69, 70:74, 75:79, 80:84, 85:89,
90:94), group_sizes = c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), biggest_group_size = 5L, labels = structure(list(
WallReg_2p5 = c("African", "Amazonian", "Arctico-Siberian",
"Australian", "Chinese", "Eurasian", "Guineo-Congolian",
"Indo-Malayan", "Japanese", "Madagascan", "Mexican", "North American",
"Novozelandic", "Oriental", "Panamanian", "Papua-Melanesian",
"Saharo-Arabian", "South American", "Tibetan")), row.names = c(NA,
-19L), class = "data.frame", vars = "WallReg_2p5", drop = TRUE, .Names = "WallReg_2p5"))
我要做的是为每个区域生成所有piC_
列的加权值。每列(x
)的过程包括3个步骤:
piC_x
列中的每一行乘以Y_Coord_2p5Weighting
piC_x
组WallReg_2p5
值
piC_x
值除以每个Y_Coord_2p5Weighting
组的WallReg_2p5
值的总和经过一些阅读后,data.table
显示大型数据集上的dplyr
比r
更快,但我愿意使用任一软件包,甚至是基础data.table
。
我曾尝试同时执行这两项操作,但在使用dplyr
时收到的结果不正确,而且当我将其应用于完整数据框时,我担心df <- df %>% tbl_df() %>%
group_by(WallReg_2p5) %>%
summarise(meanS = mean(piC_1), minS = min(piC_1), maxS = max(piC_1))
# A tibble: 19 x 4
WallReg_2p5 meanS minS maxS
<chr> <dbl> <dbl> <dbl>
1 African 8.83 4.70 15.1
2 Amazonian 10.1 5.56 15.6
3 Arctico-Siberian 13.9 2.95 21.6
4 Australian 8.14 3.44 12.3
5 Chinese 9.38 3.87 14.3
6 Eurasian 10.5 1.86 22.0
7 Guineo-Congolian 7.41 0.602 12.3
8 Indo-Malayan 13.3 6.22 22.0
9 Japanese 5.37 0.996 8.33
10 Madagascan 4.41 0.893 10.4
11 Mexican 6.03 3.31 8.11
12 North American 5.77 1.25 13.3
13 Novozelandic 14.1 6.72 20.8
14 Oriental 15.3 11.5 18.6
15 Panamanian 13.2 2.95 18.6
16 Papua-Melanesian 6.35 0.512 13.3
17 Saharo-Arabian 5.27 0.866 11.2
18 South American 13.2 6.42 21.8
19 Tibetan 7.03 1.83 13.6
weighted <- df %>%
mutate_at(.funs = funs(.*Y_Coord_2p5Weighting), .vars = vars(starts_with("piC_"))) %>% ## multiply by lat weight
mutate_at(.funs = funs(sum), .vars = vars(starts_with("piC_"))) %>% ## sum the weighted values
mutate_at(.funs = funs(./sum(Y_Coord_2p5Weighting)), .vars = vars(starts_with("piC_"))) ## divide weighted values by sum of weights
weighted %>% tbl_df %>% group_by(WallReg_2p5) %>% summarise(meanS = mean(piC_1), minS = min(piC_1), maxS = max(piC_1))
# A tibble: 19 x 4
WallReg_2p5 meanS minS maxS
<chr> <dbl> <dbl> <dbl>
1 African 8.82 8.82 8.82
2 Amazonian 10.1 10.1 10.1
3 Arctico-Siberian 14.5 14.5 14.5
4 Australian 8.21 8.21 8.21
5 Chinese 9.32 9.32 9.32
6 Eurasian 9.86 9.86 9.86
7 Guineo-Congolian 7.41 7.41 7.41
8 Indo-Malayan 13.4 13.4 13.4
9 Japanese 5.47 5.47 5.47
10 Madagascan 4.38 4.38 4.38
11 Mexican 6.10 6.10 6.10
12 North American 5.09 5.09 5.09
13 Novozelandic 14.6 14.6 14.6
14 Oriental 15.2 15.2 15.2
15 Panamanian 13.2 13.2 13.2
16 Papua-Melanesian 6.36 6.36 6.36
17 Saharo-Arabian 5.22 5.22 5.22
18 South American 13.2 13.2 13.2
19 Tibetan 7.01 7.01 7.01
的速度。这是我到目前为止所尝试的内容
dplyr
dplyr
使用data.table
我得到了正确的值。但是,当我使用df <- df %>% group_by(WallReg_2p5) %>%
as.data.table(.) %>% setkey(., WallReg_2p5)
is.data.table(df); haskey(df)
[1] TRUE
[1] TRUE
## same as above
df %>% tbl_df %>% group_by(WallReg_2p5) %>%
summarise(meanS = mean(piC_1), minS = min(piC_1), maxS = max(piC_1))
# A tibble: 19 x 4
WallReg_2p5 meanS minS maxS
<chr> <dbl> <dbl> <dbl>
1 African 8.83 4.70 15.1
2 Amazonian 10.1 5.56 15.6
3 Arctico-Siberian 13.9 2.95 21.6
4 Australian 8.14 3.44 12.3
5 Chinese 9.38 3.87 14.3
6 Eurasian 10.5 1.86 22.0
7 Guineo-Congolian 7.41 0.602 12.3
8 Indo-Malayan 13.3 6.22 22.0
9 Japanese 5.37 0.996 8.33
10 Madagascan 4.41 0.893 10.4
11 Mexican 6.03 3.31 8.11
12 North American 5.77 1.25 13.3
13 Novozelandic 14.1 6.72 20.8
14 Oriental 15.3 11.5 18.6
15 Panamanian 13.2 2.95 18.6
16 Papua-Melanesian 6.35 0.512 13.3
17 Saharo-Arabian 5.27 0.866 11.2
18 South American 13.2 6.42 21.8
19 Tibetan 7.03 1.83 13.6
# https://stackoverflow.com/q/28123098/1710632
indx <- grep("piC_", colnames(df))
for (j in indx) {
set(df, i = NULL, j = j, value = df[[j]]*df[["Y_Coord_2p5Weighting"]]) ## multiply by weights
set(df, i = NULL, j = j, value = sum(df[[j]])) ## sum the weighted values
set(df, i = NULL, j = j, value = df[[j]]/sum(df[["Y_Coord_2p5Weighting"]])) ## divide by sum of weights
}
## wrong values
df %>% tbl_df %>% group_by(WallReg_2p5) %>%
summarise(meanS = mean(piC_1), minS = min(piC_1), maxS = max(piC_1))
# A tibble: 19 x 4
WallReg_2p5 meanS minS maxS
<chr> <dbl> <dbl> <dbl>
1 African 9.27 9.27 9.27
2 Amazonian 9.27 9.27 9.27
3 Arctico-Siberian 9.27 9.27 9.27
4 Australian 9.27 9.27 9.27
5 Chinese 9.27 9.27 9.27
6 Eurasian 9.27 9.27 9.27
7 Guineo-Congolian 9.27 9.27 9.27
8 Indo-Malayan 9.27 9.27 9.27
9 Japanese 9.27 9.27 9.27
10 Madagascan 9.27 9.27 9.27
11 Mexican 9.27 9.27 9.27
12 North American 9.27 9.27 9.27
13 Novozelandic 9.27 9.27 9.27
14 Oriental 9.27 9.27 9.27
15 Panamanian 9.27 9.27 9.27
16 Papua-Melanesian 9.27 9.27 9.27
17 Saharo-Arabian 9.27 9.27 9.27
18 South American 9.27 9.27 9.27
19 Tibetan 9.27 9.27 9.27
时,我得到的值不正确。我的代码基于问题here,但显然我做错了。
data.table
?set()
阅读data.table
,声明它无法执行分组操作,但我认为,因为我已经定义了我的组,这个过程可以正常工作。我之前从未使用String fileURL = "https://www.dropbox.com/s/(obfuscated)/stripad.jpg";
ImageLoaderConfiguration config = new ImageLoaderConfiguration.Builder(this).build();
ImageLoader imageLoader = ImageLoader.getInstance();
imageLoader.init(config);
ImageView imageview = (ImageView)findViewById(R.id.adtest1);
DisplayImageOptions options = new DisplayImageOptions.Builder()
.imageScaleType(ImageScaleType.EXACTLY_STRETCHED)
.cacheInMemory(true)
.bitmapConfig(Bitmap.Config.RGB_565)
.build();
imageLoader.displayImage(fileURL, imageview, options);
,所以我们非常感谢任何指导。