我训练了一个二元分类器,将明显的MNIST图像与模糊图像区分开来。所有图像都是28 * 28 * 1灰度数字,我有40000用于训练,10000用于验证,8000用于测试。我的代码如下:
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import cv2
import numpy as np
import glob
from PIL import Image
img_width, img_height = 28, 28#all MNIST images are of size (28*28)
train_data_dir = '/Binary Classifier/data/train'#train directory generated by train_cla
validation_data_dir = '/Binary Classifier/data/val'#validation directory generated by val_cla
train_samples = 40000
validation_samples = 10000
epochs = 20
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
#build a sequential model to train data
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(#train data generator
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
val_datagen = ImageDataGenerator(rescale=1. / 255)#validation data generator
train_generator = train_datagen.flow_from_directory(#train generator
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',color_mode = 'grayscale')
validation_generator = val_datagen.flow_from_directory(#validation generator
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',color_mode = 'grayscale')
model.fit_generator(#fit the generator to train and validate the model
train_generator,
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_samples // batch_size)
#model.save_weights('output.h5')#save the output as HDF5 file
filelist = glob.glob('/Binary Classifier/data/image_data/*.png')
x = np.array([np.array(Image.open(fname)) for fname in filelist])
x = np.expand_dims(x, axis=3)
ones=model.predict(x)
但是我在[]中的输出预测都是[1.],而训练的准确性实际上非常高(几乎完美)。有谁知道为什么?
编辑:如果我可以显示我的图像数据,我想我可能会得到更多帮助。基本上,目录中的MNIST图像是(清除)或(模糊)。所有都是(28 * 28 * 1)灰度图像,格式为.png。 '/Binary Classifier/data/train'
用于培训有40000个数字,'/Binary Classifier/data/val'
用于验证有10000个数字,'/Binary Classifier/data/image_data/
有58000个用于测试。
答案 0 :(得分:0)
一些建议:
binary_accuracy
,因为您将问题视为二进制分类问题(网络只有一个输出)。