从MySQL数据库中检索数据时,Pandas parse_date应该如何工作?
Pandas 0.23的文档提供了以下信息:
parse_dates:list或dict,默认值:无
要解析为日期的列名列表。
{column_name:format的字典 string}格式字符串在解析时与strftime兼容 字符串时间,或者是解析时(D,s,ns,ms,us)之一 整数时间戳。
{column_name:arg dict}的词典,其中arg dict对应pandas.to_datetime()的关键字参数 对于没有本机日期时间支持的数据库尤其有用 作为SQLite。
我想从MySQL Sakila数据库中检索一些数据。
create table actor
(
actor_id smallint(5) unsigned auto_increment
primary key,
first_name varchar(45) not null,
last_name varchar(45) not null,
last_update timestamp not null on update CURRENT_TIMESTAMP,
constraint idx_unique_id_name
unique (actor_id, last_name)
)
以下是一些示例数据:
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (1, 'PENELOPE', 'None', '2018-05-17 11:08:03');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (2, 'NICK', 'WAHLBERG', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (3, 'ED', 'CHASE', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (4, 'JENNIFER', 'DAVIS', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (5, 'JOHNNY', 'LOLLOBRIGIDA', '2018-05-17 11:14:15');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (6, 'BETTE', 'Echt', '2018-05-17 11:13:57');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (7, 'GRACE', 'MOSTEL', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (8, 'MATTHEW', 'JOHANSSON', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (9, 'JOE', 'SWANK', '2006-02-15 04:34:33');
INSERT INTO sakila.actor (actor_id, first_name, last_name, last_update) VALUES (10, 'CHRISTIAN', 'GABLE', '2006-02-15 04:34:33');
我使用默认的MySQL Python连接器:
db_connection_url = 'mysql+mysqlconnector://' \
+ mysql_config_dict['user'] \
+ ":" \
+ mysql_config_dict['password'] \
+ "@" \
+ mysql_config_dict['host'] \
+ ":" \
+ mysql_config_dict['port'] \
+ "/" \
+ mysql_config_dict['db_name']
if('ssl_cert' in mysql_config_dict):
ssl_args = {'ssl_ca':mysql_config_dict['ssl_ca']}
else:
ssl_args = ''
使用这些参数
mysql_config_dict = {
'user': 'root',
'password': '',
'host': '127.0.0.1',
'port': '3306',
'db_name': 'sakila',
'ssl_cert': os.getenv('SSL_CERT'),
'ssl_key': os.getenv('SSL_KEY'),
'ssl_ca': os.getenv('SSL_CA')
}
获取引擎。
用于检索结果集的Python代码段:
df = pd.read_sql_query('SELECT a.actor_id, a.last_name, a.last_update FROM sakila.actor a',parse_dates={'last_update':'%Y%m%d %H:%M:%S'},con=mysql_conn)
我获得了一个KeyError:
Traceback (most recent call last):
File "~/Development/python-virtual-env/lib/python3.5/site-packages/pandas/core/indexes/base.py", line 2442, in get_loc
return self._engine.get_loc(key)
File "pandas/_libs/index.pyx", line 132, in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5280)
File "pandas/_libs/index.pyx", line 154, in pandas._libs.index.IndexEngine.get_loc (pandas/_libs/index.c:5126)
File "pandas/_libs/hashtable_class_helper.pxi", line 1210, in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20523)
File "pandas/_libs/hashtable_class_helper.pxi", line 1218, in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas/_libs/hashtable.c:20477)
KeyError: 'last_update'
当我使用
时df = pd.read_sql_query('SELECT a.actor_id, a.last_name, a.last_update FROM sakila.actor a',parse_dates=True,con=mysql_conn)
它有效,但我可以在IntelliJ的DataFrame视图中看到列的列名称#last_update'以字节为前缀: b' last_update' ,这很奇怪。
当我想将多列视为日期列时,此处的正确用法是什么。谢谢!
答案 0 :(得分:0)
当我使用以下命令调用pd.read_sql时,我将列表中的字段名称传递给parse_dates:
df= pd.read_sql(query,
connection,
parse_dates=['Date_of_creation',
'Date_of_termination']
)
您提到使用字典进行自定义格式化:
fmt='%Y%m%d %H:%M:%S'
df= pd.read_sql(query,
connection,
parse_dates={'Date_of_creation':fmt,
'Date_of_termination':fmt}
)