我已经有了一个相位屏幕(2-D NxN矩阵和LxL的大小比例,例如:N = 256,L = 2米)。
我想找到由D(delta(r))=< [x(r)-x(r + delta(r))] ^ 2>定义的相位结构函数-D(r)。 (<。>是整体平均,r是相位屏幕中的位置,x是相位屏幕中的相位值,delta(r)是可变的而不是固定的)在Matlab程序中。你对我的目的有什么建议吗?
P / S:我试图通过自相关计算D(r)(定义为B(r)),但这个计算仍然保留了一些近似值。因此,我想精确计算D(r)的结果。拜托你see this image to better understand the definition of D(r) and B(r)。下面是我的函数代码来计算B(r)。
% Code copied from "Numerical Simulation of Optical Wave Propagation with Examples in Matlab",
% by Jason D. Schmidt, SPIE Press, SPIE Vol. No.: PM199
% listing 3.7, page 48.
% (Schmidt defines the ft2 and ift2 functions used in this code elswhere.)
function D = str_fcn2_ft(ph, mask, delta)
% function D = str_fcn2_ft(ph, mask, delta)
N = size(ph, 1);
ph = ph .* mask;
P = ft2(ph, delta);
S = ft2(ph.^2, delta);
W = ft2(mask, delta);
delta_f = 1/(N*delta);
w2 = ift2(W.*conj(W), delta_f);
D = 2 * ft2(real(S.*conj(W)) - abs(P).^2, delta) ./ w2 .*mask;`
%fire run
N = 256; %number of samples
L = 16; %grid size [m]
delta = L/N; %sample spacing [m]
F = 1/L; %frequency-domain grid spacing[1/m]
x = [-N/2 : N/2-1]*delta;
[x y] = meshgrid(x);
w = 2; %width of rectangle
%A = rect(x/2).*rect(y/w);
A = lambdaWrapped;
%A = phz;
mask = ones(N);
%perform digital structure function
C = str_fcn2_ft(A, mask, delta);
C = real(C);
答案 0 :(得分:0)
直接计算此函数D(r)的一种方法是通过随机抽样:在屏幕上选择两个随机点,确定它们的距离和相位差的平方,并更新累加器:
phi = rand(256,256)*(2*pi); % the data, phase
N = size(phi,1); % number of samples
L = 16; % grid size [m]
delta = L/N; % sample spacing [m]
D = zeros(1,sqrt(2)*N); % output function
count = D; % for computing mean
for n = 1:1e6 % find a good amount of points here, the more points the better the estimate
coords = randi(N,2,2);
r = round(norm(coords(1,:) - coords(2,:)));
if r<1
continue % skip if the two coordinates are the same
end
d = phi(coords(1,1),coords(1,2)) - phi(coords(2,1),coords(2,2));
d = mod(abs(d),pi); % you might not need this, depending on how A is constructed
D(r) = D(r) + d.^2;
count(r) = count(r) + 1;
end
I = count > 0;
D(I) = D(I) ./ count(I); % do not divide by 0, some bins might not have any samples
I = count < 100;
D(I) = 0; % ignore poor estimates
r = (1:length(D)) * delta;
plot(r,D)
如果您需要更高的精度,请考虑插值。计算随机坐标作为浮点值,并插入相位以获取样本之间的值。 D
然后需要更长,索引为round(r*10)
或类似的东西。您将需要更多随机样本来填充更大的累加器。