我有一个R数据框,其中包含我想要“展开”的因子,因此对于每个因子级别,新数据框中都有一个关联列,其中包含1/0指示符。例如,假设我有:
df.original <-data.frame(eggs = c("foo", "foo", "bar", "bar"), ham = c(1,2,3,4))
我想:
df.desired <- data.frame(foo = c(1,1,0,0), bar=c(0,0,1,1), ham=c(1,2,3,4))
因为对于某些需要完全数字数据框的分析(例如,主成分分析),我认为这个特性可能是内置的。写一个函数来做这个不应该太难,但我可以预见到与列名相关的一些挑战,如果已存在某些问题,我宁愿使用它。
答案 0 :(得分:118)
使用model.matrix
功能:
model.matrix( ~ Species - 1, data=iris )
答案 1 :(得分:16)
如果您的数据框仅由因子组成(或者您正在处理所有因素的变量子集),您还可以使用acm.disjonctif
包中的ade4
函数:
R> library(ade4)
R> df <-data.frame(eggs = c("foo", "foo", "bar", "bar"), ham = c("red","blue","green","red"))
R> acm.disjonctif(df)
eggs.bar eggs.foo ham.blue ham.green ham.red
1 0 1 0 0 1
2 0 1 1 0 0
3 1 0 0 1 0
4 1 0 0 0 1
不完全是你描述的情况,但它也很有用......
答案 2 :(得分:8)
使用reshape2
包的快捷方式:
require(reshape2)
> dcast(df.original, ham ~ eggs, length)
Using ham as value column: use value_var to override.
ham bar foo
1 1 0 1
2 2 0 1
3 3 1 0
4 4 1 0
请注意,这会精确生成所需的列名称。
答案 3 :(得分:6)
可能虚拟变量与您想要的类似。 然后,model.matrix非常有用:
> with(df.original, data.frame(model.matrix(~eggs+0), ham))
eggsbar eggsfoo ham
1 0 1 1
2 0 1 2
3 1 0 3
4 1 0 4
答案 4 :(得分:6)
来自class.ind
包
nnet
library(nnet)
with(df.original, data.frame(class.ind(eggs), ham))
bar foo ham
1 0 1 1
2 0 1 2
3 1 0 3
4 1 0 4
答案 5 :(得分:4)
刚刚遇到这个旧线程并认为我添加了一个利用ade4来获取由因子和/或数字数据组成的数据帧的函数,并返回一个带有因子作为伪代码的数据帧。
dummy <- function(df) {
NUM <- function(dataframe)dataframe[,sapply(dataframe,is.numeric)]
FAC <- function(dataframe)dataframe[,sapply(dataframe,is.factor)]
require(ade4)
if (is.null(ncol(NUM(df)))) {
DF <- data.frame(NUM(df), acm.disjonctif(FAC(df)))
names(DF)[1] <- colnames(df)[which(sapply(df, is.numeric))]
} else {
DF <- data.frame(NUM(df), acm.disjonctif(FAC(df)))
}
return(DF)
}
我们试一试。
df <-data.frame(eggs = c("foo", "foo", "bar", "bar"),
ham = c("red","blue","green","red"), x=rnorm(4))
dummy(df)
df2 <-data.frame(eggs = c("foo", "foo", "bar", "bar"),
ham = c("red","blue","green","red"))
dummy(df2)
答案 6 :(得分:3)
这是一种更清晰的方法。我使用model.matrix创建虚拟布尔变量,然后将其合并回原始数据帧。
df.original <-data.frame(eggs = c("foo", "foo", "bar", "bar"), ham = c(1,2,3,4))
df.original
# eggs ham
# 1 foo 1
# 2 foo 2
# 3 bar 3
# 4 bar 4
# Create the dummy boolean variables using the model.matrix() function.
> mm <- model.matrix(~eggs-1, df.original)
> mm
# eggsbar eggsfoo
# 1 0 1
# 2 0 1
# 3 1 0
# 4 1 0
# attr(,"assign")
# [1] 1 1
# attr(,"contrasts")
# attr(,"contrasts")$eggs
# [1] "contr.treatment"
# Remove the "eggs" prefix from the column names as the OP desired.
colnames(mm) <- gsub("eggs","",colnames(mm))
mm
# bar foo
# 1 0 1
# 2 0 1
# 3 1 0
# 4 1 0
# attr(,"assign")
# [1] 1 1
# attr(,"contrasts")
# attr(,"contrasts")$eggs
# [1] "contr.treatment"
# Combine the matrix back with the original dataframe.
result <- cbind(df.original, mm)
result
# eggs ham bar foo
# 1 foo 1 0 1
# 2 foo 2 0 1
# 3 bar 3 1 0
# 4 bar 4 1 0
# At this point, you can select out the columns that you want.
答案 7 :(得分:0)
我需要一个功能来“爆炸”更灵活的因素,并根据ade4包中的acm.disjonctif函数制作一个。 这允许您选择分解值,在acm.disjonctif中为0和1。它只会爆炸具有“少量”水平的因素。保留数字列。
# Function to explode factors that are considered to be categorical,
# i.e., they do not have too many levels.
# - data: The data.frame in which categorical variables will be exploded.
# - values: The exploded values for the value being unequal and equal to a level.
# - max_factor_level_fraction: Maximum number of levels as a fraction of column length. Set to 1 to explode all factors.
# Inspired by the acm.disjonctif function in the ade4 package.
explode_factors <- function(data, values = c(-0.8, 0.8), max_factor_level_fraction = 0.2) {
exploders <- colnames(data)[sapply(data, function(col){
is.factor(col) && nlevels(col) <= max_factor_level_fraction * length(col)
})]
if (length(exploders) > 0) {
exploded <- lapply(exploders, function(exp){
col <- data[, exp]
n <- length(col)
dummies <- matrix(values[1], n, length(levels(col)))
dummies[(1:n) + n * (unclass(col) - 1)] <- values[2]
colnames(dummies) <- paste(exp, levels(col), sep = '_')
dummies
})
# Only keep numeric data.
data <- data[sapply(data, is.numeric)]
# Add exploded values.
data <- cbind(data, exploded)
}
return(data)
}