数据集标记
X <- c("vijay","raj","joy")
Y <- c("maths","eng","science","social","hindi","physical","sanskrit")
df <- list()
for (i in X){
for (j in Y)
{
df <- data.frame(subset(marks, name == i & subject == j))
}
}
这里我想要创建具有针对每个学生的所有主题标记的子集。因此,我们希望有3 X 7个子集。 但是我写的代码给了我一个子集。怎么解决这个问题?
答案 0 :(得分:3)
我们可以使用expand.grid
创建所有组合,然后循环遍历数据集的行,并subset
'标记'以获得list
data.frame
}Š
dat <- expand.grid(X, Y, stringsAsFactors = FALSE)
lst <- apply(dat, 1, function(x) subset(marks, name == x[1] & subject == x[2]))
或使用tidyverse
library(tidyverse)
crossing(X, Y) %>%
pmap(~ marks %>%
filter(name == ..1, subject == ..2))
set.seed(24)
marks <- data.frame(name = sample(X, 100, replace = TRUE),
subject = sample(Y, 100, replace = TRUE), stringsAsFactors = FALSE)
答案 1 :(得分:3)
您可以使用outer()
,但必须对内部函数进行矢量化:
X <- c("vijay","raj","joy")
Y <- c("maths","eng","science","social","hindi","physical","sanskrit")
set.seed(24)
marks <- data.frame(name = sample(X, 100, replace = TRUE),
subject = sample(Y, 100, replace = TRUE), stringsAsFactors = FALSE)
sset <- function(x,y) subset(marks, name == x & subject == y)
L <- outer(X, Y, FUN=Vectorize(sset, SIMPLIFY=FALSE))
L[1,1]
对象L
是数据框的矩阵
以下是使用双lapply()
的另一种解决方案:
L2 <- lapply(X, function(x) lapply(Y, function(y) subset(marks, name == x & subject == y)))
对象L2
是列表清单
以下是for循环的变体:
df <- vector("list", length(X)*length(Y))
l <- 1
for (i in X) for (j in Y) {
df[[l]] <- subset(marks, name == i & subject == j)
l <- l+1
}
仅针对现有级别进行子集化,您只需使用split()
L3 <- split(marks, list(marks$name, marks$subject))
objekt L3
是一个数据框列表。