使用包lfe
,我可以使用命令felm
生成具有强大标准错误或聚簇标准错误的回归结果。
对于标准回归,我可以使用函数texreg
,screenreg
或texreg
使用htmlreg
包导出回归表。但是,如果我想在lfe
包中使用强大的标准错误进行回归,我需要在robust=T
函数中添加选项summary
,因此,我想知道如何导出我在这里提到的案例中使用texreg
包的回归表?请参阅下面的演示代码。
library(lfe);library(texreg)
OLS1<-felm(Sepal.Length~Sepal.Width |0|0|0, data = iris)
summary(OLS1, robust=TRUE)
summary(OLS1)
OLS2<-felm(Sepal.Length~Sepal.Width |0|0|Species, data = iris)
summary(OLS2)
screenreg(list(OLS1,OLS2),caption = "Linear regression")
答案 0 :(得分:1)
也许您可以在override.se
函数中使用override.pvalues
和screenreg
来考虑解决方法。也就是说,我们首先保存稳健的标准误差和相应的p值。打印出表格时,我们会覆盖默认值。您会发现代表重要性值的星星将自动更新。
以下是复制的例子。我有意创建了iris2
。当您运行回归时,显着性水平对于稳健(p = 0.004 - 2星)和非稳健标准误差(p = 0.015 - 1星)是不同的。在您超越标准误差和p值后,screenreg
会给出2颗星。
library(lfe);library(texreg)
# Create the data iris2 which would have difference significance levels
# for robust and non-robust standard errors
iris2 = rbind(iris[1:100,], iris)
OLS1<-felm(Sepal.Length~Sepal.Width|0|0|0, data = iris2)
# you will see the difference in significance level below
summary(OLS1)
summary(OLS1, robust=TRUE)
###############################################
# Save the robust standard errors and p-values
###############################################
RSE1 = coef(summary(OLS1, robust=TRUE))[,"Robust s.e"]
RpVlaue1 = coef(summary(OLS1, robust=TRUE))[,"Pr(>|t|)"]
# the second regression
OLS2<-felm(Sepal.Length~Sepal.Width|0|0|0, data = iris)
RSE2 = coef(summary(OLS2, robust=TRUE))[,"Robust s.e"]
RpVlaue2 = coef(summary(OLS2, robust=TRUE))[,"Pr(>|t|)"]
screenreg(list(OLS1, OLS2), override.se = list(RSE1, RSE2),
override.pvalues = list(RpVlaue1, RpVlaue2),
caption = "Linear regression")
你会发现第一个回归OLS1,有两个恒星来自强大的标准误差!
对于群集标准错误,如果您已按照felm
指定群集
OLS2<-felm(Sepal.Length~Sepal.Width |0|0|Species, data = iris)
默认值为群集标准错误。也就是说,没有必要超越。
答案 1 :(得分:1)
您可以在s <- summary(model)
包中的提取函数中将行s <- summary(model, ...)
更改为texreg
:
library("texreg")
extract.felm <- function(model, include.nobs = TRUE, include.rsquared = TRUE,
include.adjrs = TRUE, include.fstatistic = FALSE, ...) {
s <- summary(model, ...)
nam <- rownames(s$coefficients)
co <- s$coefficients[, 1]
se <- s$coefficients[, 2]
pval <- s$coefficients[, 4]
gof <- numeric()
gof.names <- character()
gof.decimal <- logical()
if (include.nobs == TRUE) {
gof <- c(gof, s$N)
gof.names <- c(gof.names, "Num.\ obs.")
gof.decimal <- c(gof.decimal, FALSE)
}
if (include.rsquared == TRUE) {
gof <- c(gof, s$r2, s$P.r.squared)
gof.names <- c(gof.names, "R$^2$ (full model)", "R$^2$ (proj model)")
gof.decimal <- c(gof.decimal, TRUE, TRUE)
}
if (include.adjrs == TRUE) {
gof <- c(gof, s$r2adj, s$P.adj.r.squared)
gof.names <- c(gof.names, "Adj.\ R$^2$ (full model)",
"Adj.\ R$^2$ (proj model)")
gof.decimal <- c(gof.decimal, TRUE, TRUE)
}
if (include.fstatistic == TRUE) {
gof <- c(gof, s$F.fstat[1], s$F.fstat[4],
s$P.fstat[length(s$P.fstat) - 1], s$P.fstat[1])
gof.names <- c(gof.names, "F statistic (full model)",
"F (full model): p-value", "F statistic (proj model)",
"F (proj model): p-value")
gof.decimal <- c(gof.decimal, TRUE, TRUE, TRUE, TRUE)
}
tr <- createTexreg(
coef.names = nam,
coef = co,
se = se,
pvalues = pval,
gof.names = gof.names,
gof = gof,
gof.decimal = gof.decimal
)
return(tr)
}
setMethod("extract", signature = className("felm", "lfe"),
definition = extract.felm)
然后您应该能够将robust = TRUE
参数移交给screenreg
或texreg
来电:
library("lfe")
OLS1 <- felm(Sepal.Length ~ Sepal.Width |0|0|0, data = iris
OLS2 <- felm(Sepal.Length ~ Sepal.Width |0|0|Species, data = iris)
# regular standard errors
screenreg(list(OLS1, OLS2), caption = "Linear regression")
# robust standard errors
screenreg(list(OLS1, OLS2), caption = "Linear regression", robust = TRUE)
# mixing regular and robust standard errors
tr1 <- extract(OLS1)
tr2 <- extract(OLS1, robust = TRUE)
screenreg(list(tr1, tr2))