我试图找到屏蔽段的多余部分。例如:
mask = [1, 0, 0, 1, 1, 1, 0, 0]
segments = [(0, 0), (3, 5)]
目前的解决方案看起来像这样(它的非常慢,因为我的面具包含数百万个数字):
segments = []
start = 0
for i in range(len(mask) - 1):
e1 = mask[i]
e2 = mask[i + 1]
if e1 == 0 and e2 == 1:
start = i + 1
elif e1 == 1 and e2 == 0:
segments.append((start, i))
有没有办法用numpy有效地做到这一点?
我唯一设法谷歌的是numpy.ma.notmasked_edges,但它看起来并不像我需要的那样。
答案 0 :(得分:4)
这是一种方法 -
def start_stop(a, trigger_val):
# "Enclose" mask with sentients to catch shifts later on
mask = np.r_[False,np.equal(a, trigger_val),False]
# Get the shifting indices
idx = np.flatnonzero(mask[1:] != mask[:-1])
# Get the start and end indices with slicing along the shifting ones
return zip(idx[::2], idx[1::2]-1)
示例运行 -
In [216]: mask = [1, 0, 0, 1, 1, 1, 0, 0]
In [217]: start_stop(mask, trigger_val=1)
Out[217]: [(0, 0), (3, 5)]
使用它来获取0s
-
In [218]: start_stop(mask, trigger_val=0)
Out[218]: [(1, 2), (6, 7)]
100000x
上的计时加大了数据量 -
In [226]: mask = [1, 0, 0, 1, 1, 1, 0, 0]
In [227]: mask = np.repeat(mask,100000)
# Original soln
In [230]: %%timeit
...: segments = []
...: start = 0
...: for i in range(len(mask) - 1):
...: e1 = mask[i]
...: e2 = mask[i + 1]
...: if e1 == 0 and e2 == 1:
...: start = i + 1
...: elif e1 == 1 and e2 == 0:
...: segments.append((start, i))
1 loop, best of 3: 401 ms per loop
# @Yakym Pirozhenko's soln
In [231]: %%timeit
...: slices = np.ma.clump_masked(np.ma.masked_where(mask, mask))
...: result = [(s.start, s.stop - 1) for s in slices]
100 loops, best of 3: 4.8 ms per loop
In [232]: %timeit start_stop(mask, trigger_val=1)
1000 loops, best of 3: 1.41 ms per loop
答案 1 :(得分:2)
使用np.ma.clump_masked
的替代方法。
mask = np.array([1, 0, 0, 1, 1, 1, 0, 0])
# get a list of "clumps" or contiguous slices.
slices = np.ma.clump_masked(np.ma.masked_where(mask, mask))
# convert each slice to a tuple of indices.
result = [(s.start, s.stop - 1) for s in slices]
# [(0, 0), (3, 5)]