查找列表中所有可能对的最快捷方式是什么?

时间:2011-02-18 18:28:36

标签: algorithm language-agnostic round-robin

基本上我有玩家名单,我想把它们配对,这样每个玩家都会玩一次。找到这些数据的最快方法是什么?

4 个答案:

答案 0 :(得分:5)

假设玩家没有两次出现在列表中,那么双for循环非常快:

for (int i=0, i <= playerList.Count - 2, i++)
    for (int j=i+1, j <= playerList.Count - 1, j++)
        //add a new pairing of player i and j

答案 1 :(得分:2)

此类锦标赛时间表通常称为round-robin。在维基百科中,还有一个可能scheduling algorithm的例子。

答案 2 :(得分:2)

我将2个实现放在一起来比较性能。非常幼稚的版本1比版本2慢大约50%。这并不是说没有更快的版本存在。

class Program
{
    class Player
    {
        public string Name { get; set; }

        public Player(string name)
        {
            Name = name;
        }
    }

    class Match
    {
        public readonly Player Player1;
        public readonly Player Player2;

        public Match(Player player1, Player player2)
        {
            Player1 = player1;
            Player2 = player2;
        }

        public override string ToString()
        {
            return string.Format("{0} vs. {1}", Player1.Name, Player2.Name);
        }
    }

    static readonly List<Player> _players = new List<Player>()
    {
        new Player("John"),
        new Player("Lisa"),
        new Player("Matt"),
        new Player("Dan"),
        new Player("Steve"),
        new Player("Sarah"),
        new Player("Tim")
    };

    static void Main(string[] args)
    {
        const int count = 1000000;

        {
            var v1 = V1();
            var sw = Stopwatch.StartNew();
            for (int i = 0; i < count; i++)
            {
                v1 = V1();
            }
            Console.WriteLine(v1);
            Console.WriteLine(sw.Elapsed);
        }

        {
            var v2 = V2();
            var sw = Stopwatch.StartNew();
            for (int i = 0; i < count; i++)
            {
                v2 = V2();
            }
            Console.WriteLine(v2);
            Console.WriteLine(sw.Elapsed);
        }


        Console.ReadLine();
    }

    static List<Match> V1()
    {
        var challengers = new List<Player>(_players);
        var matches = new List<Match>();
        foreach (var player in _players)
        {
            challengers.Remove(player);
            foreach (var challenger in challengers)
            {
                matches.Add(new Match(player, challenger));
            }
        }
        return matches;
    }

    static List<Match> V2()
    {
        var matches = new List<Match>();
        for (int i = 0; i < _players.Count; i++)
        {
            for (int j = i + 1; j < _players.Count; j++)
            {
                matches.Add(new Match(_players[i], _players[j]));
            }
        }
        return matches;
    }
}

答案 3 :(得分:0)

一个简单的分而治之的算法:

  1. 如果只有两个人:配对并返回。
  2. ,否则:

    1. 将组分成两组大小相等的组。
    2. 以递归方式使用此算法查找每个组中的所有配对。
    3. 加入两个列表。

      E.g。 [[(a,b)]][[(c,d)]]变为[[(a,b),(c,d)]]

    4. 通过轮换第二组来查找两组中的对。

      E.g。 [[(a,c),(b,d)],[(a,d),(b,c)]]

    5. 返回(3) + (4)
  3. 此算法在O(n^2)时间内运行,这是最佳的,因为它会生成(n-1)n/2个配对。

    对于八名玩家,你将获得7轮:

    [(a,b), (c,d), (e,f), (g,h)]
    [(a,c), (b,d), (e,g), (f,h)]
    [(a,d), (b,c), (e,h), (f,g)]
    [(a,e), (b,f), (c,g), (e,h)]
    [(a,f), (b,g), (c,h), (e,e)]
    [(a,g), (b,h), (c,e), (e,f)]
    [(a,h), (b,e), (c,f), (e,g)]